Unsupervised Learning Techniques for Breast Lesion Segmentation on MRI Images: Are We Ready for Automation?
In the era of precision medicine, increasing importance is given to machine learning (ML) applications. In breast cancer, advanced analyses, such as the radiomic process, characterise tumours and predict therapy responses. Breast magnetic resonance imaging (MRI) plays a key role in screening, stagin...
Główni autorzy: | Marina Fedon Vocaturo, Luisa Altabella, Giuseppe Cardano, Stefania Montemezzi, Carlo Cavedon |
---|---|
Format: | Artykuł |
Język: | English |
Wydane: |
MDPI AG
2025-02-01
|
Seria: | Applied Sciences |
Hasła przedmiotowe: | |
Dostęp online: | https://www.mdpi.com/2076-3417/15/5/2401 |
Podobne zapisy
-
Transformer-Based Explainable Model for Breast Cancer Lesion Segmentation
od: Huina Wang, i wsp.
Wydane: (2025-01-01) -
Value of digital breast tomosynthesis in characterization of breast lesions in dense breast
od: Marwa Romeih, i wsp.
Wydane: (2024-07-01) -
FNAC AS PREOPERATIVE DIAGNOSTIC TOOL FOR NEOPLASTIC AND NON-NEOPLASTIC BREAST LESIONS: A TEACHING HOSPITAL EXPERIENCE
od: Palak Modi, i wsp.
Wydane: (2014-12-01) -
The Role of Elastography in Differentiating Benign and Malignant Breast Lesions
od: Michał Wijata, i wsp.
Wydane: (2025-03-01) -
A modern view at the differential ultrasound diagnosis of hyperechoic benign tumors of the breast
od: T. Yu. Danzanova, i wsp.
Wydane: (2022-05-01)