Strategies to Tackle Antimicrobial Resistance: The Example of <i>Escherichia coli</i> and <i>Pseudomonas aeruginosa</i>

Traditional antimicrobial treatments consist of drugs which target different essential functions in pathogens. Nevertheless, bacteria continue to evolve new mechanisms to evade this drug-mediated killing with surprising speed on the deployment of each new drug and antibiotic worldwide, a phenomenon...

Full description

Bibliographic Details
Main Authors: Giada Antonelli, Luigia Cappelli, Paolo Cinelli, Rossella Cuffaro, Benedetta Manca, Sonia Nicchi, Serena Tondi, Giacomo Vezzani, Viola Viviani, Isabel Delany, Maria Scarselli, Francesca Schiavetti
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/22/9/4943
Description
Summary:Traditional antimicrobial treatments consist of drugs which target different essential functions in pathogens. Nevertheless, bacteria continue to evolve new mechanisms to evade this drug-mediated killing with surprising speed on the deployment of each new drug and antibiotic worldwide, a phenomenon called antimicrobial resistance (AMR). Nowadays, AMR represents a critical health threat, for which new medical interventions are urgently needed. By 2050, it is estimated that the leading cause of death will be through untreatable AMR pathogens. Although antibiotics remain a first-line treatment, non-antibiotic therapies such as prophylactic vaccines and therapeutic monoclonal antibodies (mAbs) are increasingly interesting alternatives to limit the spread of such antibiotic resistant microorganisms. For the discovery of new vaccines and mAbs, the search for effective antigens that are able to raise protective immune responses is a challenging undertaking. In this context, outer membrane vesicles (OMV) represent a promising approach, as they recapitulate the complete antigen repertoire that occurs on the surface of Gram-negative bacteria. In this review, we present <i>Escherichia coli</i> and <i>Pseudomonas aeruginosa</i> as specific examples of key AMR threats caused by Gram-negative bacteria and we discuss the current status of mAbs and vaccine approaches under development as well as how knowledge on OMV could benefit antigen discovery strategies.
ISSN:1661-6596
1422-0067