Likelihood function modelling of radar targets under high‐speed observation

Abstract The likelihood ratio function of the target plays a crucial role in applications such as tracking before detection (TBD). In the framework of random finite sets, the performance of radar target TBD based on particle filters is limited by the performance of the likelihood ratio function. Tra...

Full description

Bibliographic Details
Main Authors: YongQiang Zhang, ZhiYong Song, ChuJun Lan
Format: Article
Language:English
Published: Wiley 2023-09-01
Series:Electronics Letters
Subjects:
Online Access:https://doi.org/10.1049/ell2.12944
Description
Summary:Abstract The likelihood ratio function of the target plays a crucial role in applications such as tracking before detection (TBD). In the framework of random finite sets, the performance of radar target TBD based on particle filters is limited by the performance of the likelihood ratio function. Traditional likelihood ratio functions only consider the likelihood ratio between the target and background noise, thus requiring a high signal‐to‐noise (SNR) ratio for the input signal. In scenarios where the observation time interval is extremely short, there exists a strong autocorrelation between the complex amplitudes of the radar target at different time instants. Based on this characteristic, an autoregressive model is utilized to establish the autocorrelation of the target complex amplitudes and update the target's complex amplitudes using a Kalman filter. The likelihood ratio is derived from the model and it is compared with the traditional likelihood ratio under pulse‐Doppler radar. This comparison aims to demonstrate the effectiveness of the proposed likelihood ratio. Due to the fact that this likelihood ratio only requires the extraction of the complex amplitudes of the target scattering centre, without the need to extract the energy around the scattering centre like traditional point spread function methods, the algorithm complexity is greatly reduced, enabling real‐time operation of the proposed method.
ISSN:0013-5194
1350-911X