Application of spatial auto-beta models in statistical classification

In this paper, spatial data specified by auto-beta models is analysed by considering a supervised classification problem of classifying feature observation into one of two populations. Two classification rules based on conditional Bayes discriminant function (BDF) and linear discriminant function (L...

Full description

Bibliographic Details
Main Authors: Eglė Zikarienė, Kęstutis Dučinskas
Format: Article
Language:English
Published: Vilnius University Press 2021-12-01
Series:Lietuvos Matematikos Rinkinys
Subjects:
Online Access:https://www.zurnalai.vu.lt/LMR/article/view/25219
_version_ 1819062478234976256
author Eglė Zikarienė
Kęstutis Dučinskas
author_facet Eglė Zikarienė
Kęstutis Dučinskas
author_sort Eglė Zikarienė
collection DOAJ
description In this paper, spatial data specified by auto-beta models is analysed by considering a supervised classification problem of classifying feature observation into one of two populations. Two classification rules based on conditional Bayes discriminant function (BDF) and linear discriminant function (LDF) are proposed. These classification rules are critically compared by the values of the actual error rates through the simulation study.
first_indexed 2024-12-21T14:59:25Z
format Article
id doaj.art-c36cde29595d4c49b994bdb9f44f95d4
institution Directory Open Access Journal
issn 0132-2818
2335-898X
language English
last_indexed 2024-12-21T14:59:25Z
publishDate 2021-12-01
publisher Vilnius University Press
record_format Article
series Lietuvos Matematikos Rinkinys
spelling doaj.art-c36cde29595d4c49b994bdb9f44f95d42022-12-21T18:59:38ZengVilnius University PressLietuvos Matematikos Rinkinys0132-28182335-898X2021-12-0162A10.15388/LMR.2021.25219Application of spatial auto-beta models in statistical classificationEglė Zikarienė0Kęstutis Dučinskas1Vilnius UniversityKlaipeda UniversityIn this paper, spatial data specified by auto-beta models is analysed by considering a supervised classification problem of classifying feature observation into one of two populations. Two classification rules based on conditional Bayes discriminant function (BDF) and linear discriminant function (LDF) are proposed. These classification rules are critically compared by the values of the actual error rates through the simulation study.https://www.zurnalai.vu.lt/LMR/article/view/25219Bayes discriminant functionlinear discriminant functionactual error ratesupervised classification
spellingShingle Eglė Zikarienė
Kęstutis Dučinskas
Application of spatial auto-beta models in statistical classification
Lietuvos Matematikos Rinkinys
Bayes discriminant function
linear discriminant function
actual error rate
supervised classification
title Application of spatial auto-beta models in statistical classification
title_full Application of spatial auto-beta models in statistical classification
title_fullStr Application of spatial auto-beta models in statistical classification
title_full_unstemmed Application of spatial auto-beta models in statistical classification
title_short Application of spatial auto-beta models in statistical classification
title_sort application of spatial auto beta models in statistical classification
topic Bayes discriminant function
linear discriminant function
actual error rate
supervised classification
url https://www.zurnalai.vu.lt/LMR/article/view/25219
work_keys_str_mv AT eglezikariene applicationofspatialautobetamodelsinstatisticalclassification
AT kestutisducinskas applicationofspatialautobetamodelsinstatisticalclassification