A machine learning regression approach for predicting the bearing capacity of a strip footing on rock mass under inclined and eccentric load

In this study, the Multivariate Adaptive Regression Splines (MARS) model is employed to create a data-driven prediction for the bearing capacity of a strip footing on rock mass subjected to an inclined and eccentric load. The strengths of rock masses are based on the Hoek-Brown failure criterion. To...

Full description

Bibliographic Details
Main Authors: Van Qui Lai, Kongtawan Sangjinda, Suraparb Keawsawasvong, Alireza Eskandarinejad, Vinay Bhushan Chauhan, Worathep Sae-Long, Suchart Limkatanyu
Format: Article
Language:English
Published: Frontiers Media S.A. 2022-09-01
Series:Frontiers in Built Environment
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fbuil.2022.962331/full
_version_ 1828388653436502016
author Van Qui Lai
Van Qui Lai
Kongtawan Sangjinda
Suraparb Keawsawasvong
Alireza Eskandarinejad
Vinay Bhushan Chauhan
Worathep Sae-Long
Suchart Limkatanyu
author_facet Van Qui Lai
Van Qui Lai
Kongtawan Sangjinda
Suraparb Keawsawasvong
Alireza Eskandarinejad
Vinay Bhushan Chauhan
Worathep Sae-Long
Suchart Limkatanyu
author_sort Van Qui Lai
collection DOAJ
description In this study, the Multivariate Adaptive Regression Splines (MARS) model is employed to create a data-driven prediction for the bearing capacity of a strip footing on rock mass subjected to an inclined and eccentric load. The strengths of rock masses are based on the Hoek-Brown failure criterion. To develop the set of training data in MARS, the lower and upper bound finite element limit analysis (FELA) is carried out to obtain the numerical results of the bearing capacity of a strip footing with the width of B. There are six considered dimensionless variables, including the geological strength index (GSI), the rock constant/yield parameter (mi), the dimensionless strength (γB/σci), the adhesion factor (α), load inclined angle from the vertical axis (β), and the eccentricity of load (e/B). A total of 5,120 FELA solutions of the bearing capacity factor (P/σciB) are obtained and used as a training data set. The influences of all dimensionless variables on the bearing capacity factors and the failure mechanisms are investigated and discussed in detail. The sensitivity analysis of these dimensionless variables is also examined.
first_indexed 2024-12-10T06:16:26Z
format Article
id doaj.art-c37f5bc6554c4bfb9553a1feb35e0a6a
institution Directory Open Access Journal
issn 2297-3362
language English
last_indexed 2024-12-10T06:16:26Z
publishDate 2022-09-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Built Environment
spelling doaj.art-c37f5bc6554c4bfb9553a1feb35e0a6a2022-12-22T01:59:27ZengFrontiers Media S.A.Frontiers in Built Environment2297-33622022-09-01810.3389/fbuil.2022.962331962331A machine learning regression approach for predicting the bearing capacity of a strip footing on rock mass under inclined and eccentric loadVan Qui Lai0Van Qui Lai1Kongtawan Sangjinda2Suraparb Keawsawasvong3Alireza Eskandarinejad4Vinay Bhushan Chauhan5Worathep Sae-Long6Suchart Limkatanyu7Faculty of Civil Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, VietnamVietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, VietnamDepartment of Civil Engineering, Thammasat School of Engineering, Thammasat University, Bangkok, ThailandDepartment of Civil Engineering, Thammasat School of Engineering, Thammasat University, Bangkok, ThailandDepartment of Civil Engineering, Faculty of Engineering, Golestan University, Gorgan, IranCivil Engineering Department, Madan Mohan Malaviya University of Technology, Gorakhpur, IndiaCivil Engineering Program, School of Engineering, University of Phayao, Muang Phayao, ThailandDepartment of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Songkhla, ThailandIn this study, the Multivariate Adaptive Regression Splines (MARS) model is employed to create a data-driven prediction for the bearing capacity of a strip footing on rock mass subjected to an inclined and eccentric load. The strengths of rock masses are based on the Hoek-Brown failure criterion. To develop the set of training data in MARS, the lower and upper bound finite element limit analysis (FELA) is carried out to obtain the numerical results of the bearing capacity of a strip footing with the width of B. There are six considered dimensionless variables, including the geological strength index (GSI), the rock constant/yield parameter (mi), the dimensionless strength (γB/σci), the adhesion factor (α), load inclined angle from the vertical axis (β), and the eccentricity of load (e/B). A total of 5,120 FELA solutions of the bearing capacity factor (P/σciB) are obtained and used as a training data set. The influences of all dimensionless variables on the bearing capacity factors and the failure mechanisms are investigated and discussed in detail. The sensitivity analysis of these dimensionless variables is also examined.https://www.frontiersin.org/articles/10.3389/fbuil.2022.962331/fullbearing capacityHoek-Brownmarsrock massstrip footing
spellingShingle Van Qui Lai
Van Qui Lai
Kongtawan Sangjinda
Suraparb Keawsawasvong
Alireza Eskandarinejad
Vinay Bhushan Chauhan
Worathep Sae-Long
Suchart Limkatanyu
A machine learning regression approach for predicting the bearing capacity of a strip footing on rock mass under inclined and eccentric load
Frontiers in Built Environment
bearing capacity
Hoek-Brown
mars
rock mass
strip footing
title A machine learning regression approach for predicting the bearing capacity of a strip footing on rock mass under inclined and eccentric load
title_full A machine learning regression approach for predicting the bearing capacity of a strip footing on rock mass under inclined and eccentric load
title_fullStr A machine learning regression approach for predicting the bearing capacity of a strip footing on rock mass under inclined and eccentric load
title_full_unstemmed A machine learning regression approach for predicting the bearing capacity of a strip footing on rock mass under inclined and eccentric load
title_short A machine learning regression approach for predicting the bearing capacity of a strip footing on rock mass under inclined and eccentric load
title_sort machine learning regression approach for predicting the bearing capacity of a strip footing on rock mass under inclined and eccentric load
topic bearing capacity
Hoek-Brown
mars
rock mass
strip footing
url https://www.frontiersin.org/articles/10.3389/fbuil.2022.962331/full
work_keys_str_mv AT vanquilai amachinelearningregressionapproachforpredictingthebearingcapacityofastripfootingonrockmassunderinclinedandeccentricload
AT vanquilai amachinelearningregressionapproachforpredictingthebearingcapacityofastripfootingonrockmassunderinclinedandeccentricload
AT kongtawansangjinda amachinelearningregressionapproachforpredictingthebearingcapacityofastripfootingonrockmassunderinclinedandeccentricload
AT suraparbkeawsawasvong amachinelearningregressionapproachforpredictingthebearingcapacityofastripfootingonrockmassunderinclinedandeccentricload
AT alirezaeskandarinejad amachinelearningregressionapproachforpredictingthebearingcapacityofastripfootingonrockmassunderinclinedandeccentricload
AT vinaybhushanchauhan amachinelearningregressionapproachforpredictingthebearingcapacityofastripfootingonrockmassunderinclinedandeccentricload
AT worathepsaelong amachinelearningregressionapproachforpredictingthebearingcapacityofastripfootingonrockmassunderinclinedandeccentricload
AT suchartlimkatanyu amachinelearningregressionapproachforpredictingthebearingcapacityofastripfootingonrockmassunderinclinedandeccentricload
AT vanquilai machinelearningregressionapproachforpredictingthebearingcapacityofastripfootingonrockmassunderinclinedandeccentricload
AT vanquilai machinelearningregressionapproachforpredictingthebearingcapacityofastripfootingonrockmassunderinclinedandeccentricload
AT kongtawansangjinda machinelearningregressionapproachforpredictingthebearingcapacityofastripfootingonrockmassunderinclinedandeccentricload
AT suraparbkeawsawasvong machinelearningregressionapproachforpredictingthebearingcapacityofastripfootingonrockmassunderinclinedandeccentricload
AT alirezaeskandarinejad machinelearningregressionapproachforpredictingthebearingcapacityofastripfootingonrockmassunderinclinedandeccentricload
AT vinaybhushanchauhan machinelearningregressionapproachforpredictingthebearingcapacityofastripfootingonrockmassunderinclinedandeccentricload
AT worathepsaelong machinelearningregressionapproachforpredictingthebearingcapacityofastripfootingonrockmassunderinclinedandeccentricload
AT suchartlimkatanyu machinelearningregressionapproachforpredictingthebearingcapacityofastripfootingonrockmassunderinclinedandeccentricload