Allocation of Ontario’s Surplus Electricity to Different Power-to-Gas Applications

Power-to-Gas (PtG) is a potential means of managing intermittent and weather-dependent renewable energies to create a storable chemical energy form. Power-to-Gas is not only a storage technology; its role can be extended to many other applications including energy distribution, transportation, and i...

Full description

Bibliographic Details
Main Authors: Suaad S. Al-Zakwani, Azadeh Maroufmashat, Abdelkader Mazouz, Michael Fowler, Ali Elkamel
Format: Article
Language:English
Published: MDPI AG 2019-07-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/12/14/2675
Description
Summary:Power-to-Gas (PtG) is a potential means of managing intermittent and weather-dependent renewable energies to create a storable chemical energy form. Power-to-Gas is not only a storage technology; its role can be extended to many other applications including energy distribution, transportation, and industrial use. This study quantifies the hydrogen volumes upon utilizing Ontario, Canada&#8217;s surplus electricity baseload and explores the allocation of the hydrogen produced to four Power-to-Gas pathways in terms of economic and environmental benefits, focusing on the following Power-to-Gas pathways: Power-to-Gas to mobility fuel, Power-to-Gas to industry, Power-to-Gas to natural gas pipelines for use as hydrogen-enriched natural gas, and Power-to-Gas to renewable natural gas (i.e., Methanation). The study shows that the Power-to-Gas to mobility fuel pathway has the potential to be implemented. Utilization of hydrogen for refueling light-duty vehicles is a profitable business case with an average positive net present value of $4.5 billions, five years payback time, and 20% internal rate of return. Moreover, this PtG pathway promises a potential 2,215,916 tonnes of CO<sub>2</sub> reduction from road travel.
ISSN:1996-1073