Screening potential plant species for arresting particulates in Jharia coalfield, India

Abstract Mining and related activities cause severe degradation of ambient air quality. A study of particulate matter (PM) across transportation, mining and control (C) sites for dust attenuation capacity (DAC) in selected tree species were carried out in Jharia coalfield (JCF) to estimate the menac...

Full description

Bibliographic Details
Main Authors: Shailendra K. Singh, Ranjeet K. Singh, Raj S. Singh, Debjit Pal, Krishnakant K. Singh, Pradeep K. Singh
Format: Article
Language:English
Published: BMC 2019-12-01
Series:Sustainable Environment Research
Subjects:
Online Access:https://doi.org/10.1186/s42834-019-0039-y
_version_ 1818595823930310656
author Shailendra K. Singh
Ranjeet K. Singh
Raj S. Singh
Debjit Pal
Krishnakant K. Singh
Pradeep K. Singh
author_facet Shailendra K. Singh
Ranjeet K. Singh
Raj S. Singh
Debjit Pal
Krishnakant K. Singh
Pradeep K. Singh
author_sort Shailendra K. Singh
collection DOAJ
description Abstract Mining and related activities cause severe degradation of ambient air quality. A study of particulate matter (PM) across transportation, mining and control (C) sites for dust attenuation capacity (DAC) in selected tree species were carried out in Jharia coalfield (JCF) to estimate the menace of dust pollution and also to measure air pollution tolerance index (APTI). Results indicated that the maximum value of PM10 and PM2.5 ranged from 54 to 174 and 29 to 78 μg m− 3 respectively across all the sites. The maximum values occurred in transportation and the minimum at C for both the particulates. Mining and transportation resulted in an increase in PM10 values by 161 and 200% and PM2.5 values by 100 and 136% respectively as compared to those in C. The mean concentration of PM10 and PM2.5 across the sites exceeded the permissible limit of 100 and 60 μg m− 3 respectively. Transportation was worse than mining due to the high proportion of hazardous fine (PM2.5) particulates. DAC indicated that Tectona grandis (TG) captured maximum dust (2.15 mg cm− 2) with 85% and Peltophorum inerme (PI) the minimum (0.15 mg cm− 2) with 5% efficiency. The trend for DAC showed TG > Ficus glomerata (FG) > Psidium guajava (PG) > Ficus benghalensis (FB) > Ficus religiosa (FR) > Alstonia scholaris (AS) > Aegle marmelos (AM) > Gmelina arborea (GA) > Dalbergia sissoo (DS) > Syzyzium cumini (SC) > Azadirachta indica (AI) > Terminalia arjuna (TA) > Mangifera indica (MI) > Albizia lebbeck (AL) > PI in descending order. APTI based on pH, total chlorophyll, ascorbic acid and relative water content indicated maximum values for TG (17) with 90% and minimum for PI (10) with 57% of the total and is a measure of the sustainability of plants in JCF. The descending order for APTI was TG > PG > FG > FR > FB > AI > MI > SC > DS > GA > AM > AS > AL > TA > PI. Thus, TG is the most suitable and PI the least. Stomatal density is negatively related to DAC and positively related to APTI. DAC therefore, cannot be attributed to a single factor but a mix of complex factors such as morphological and anatomical characteristics of the leaf, particle size, species type, metabolism, location, meteorology and stress conditions. Based on the findings a greenbelt design was proposed to improve the air quality of the mining and transportation areas.
first_indexed 2024-12-16T11:22:09Z
format Article
id doaj.art-c3885ca284904bfebcbc9ce37e9c5c0d
institution Directory Open Access Journal
issn 2468-2039
language English
last_indexed 2024-12-16T11:22:09Z
publishDate 2019-12-01
publisher BMC
record_format Article
series Sustainable Environment Research
spelling doaj.art-c3885ca284904bfebcbc9ce37e9c5c0d2022-12-21T22:33:27ZengBMCSustainable Environment Research2468-20392019-12-0129111410.1186/s42834-019-0039-yScreening potential plant species for arresting particulates in Jharia coalfield, IndiaShailendra K. Singh0Ranjeet K. Singh1Raj S. Singh2Debjit Pal3Krishnakant K. Singh4Pradeep K. Singh5CSIR-Central Institute of Mining and Fuel ResearchCSIR-Central Institute of Mining and Fuel ResearchCSIR-Central Institute of Mining and Fuel ResearchDepartment of Geology, Jadavpur UniversityCSIR-Central Institute of Mining and Fuel ResearchCSIR-Central Institute of Mining and Fuel ResearchAbstract Mining and related activities cause severe degradation of ambient air quality. A study of particulate matter (PM) across transportation, mining and control (C) sites for dust attenuation capacity (DAC) in selected tree species were carried out in Jharia coalfield (JCF) to estimate the menace of dust pollution and also to measure air pollution tolerance index (APTI). Results indicated that the maximum value of PM10 and PM2.5 ranged from 54 to 174 and 29 to 78 μg m− 3 respectively across all the sites. The maximum values occurred in transportation and the minimum at C for both the particulates. Mining and transportation resulted in an increase in PM10 values by 161 and 200% and PM2.5 values by 100 and 136% respectively as compared to those in C. The mean concentration of PM10 and PM2.5 across the sites exceeded the permissible limit of 100 and 60 μg m− 3 respectively. Transportation was worse than mining due to the high proportion of hazardous fine (PM2.5) particulates. DAC indicated that Tectona grandis (TG) captured maximum dust (2.15 mg cm− 2) with 85% and Peltophorum inerme (PI) the minimum (0.15 mg cm− 2) with 5% efficiency. The trend for DAC showed TG > Ficus glomerata (FG) > Psidium guajava (PG) > Ficus benghalensis (FB) > Ficus religiosa (FR) > Alstonia scholaris (AS) > Aegle marmelos (AM) > Gmelina arborea (GA) > Dalbergia sissoo (DS) > Syzyzium cumini (SC) > Azadirachta indica (AI) > Terminalia arjuna (TA) > Mangifera indica (MI) > Albizia lebbeck (AL) > PI in descending order. APTI based on pH, total chlorophyll, ascorbic acid and relative water content indicated maximum values for TG (17) with 90% and minimum for PI (10) with 57% of the total and is a measure of the sustainability of plants in JCF. The descending order for APTI was TG > PG > FG > FR > FB > AI > MI > SC > DS > GA > AM > AS > AL > TA > PI. Thus, TG is the most suitable and PI the least. Stomatal density is negatively related to DAC and positively related to APTI. DAC therefore, cannot be attributed to a single factor but a mix of complex factors such as morphological and anatomical characteristics of the leaf, particle size, species type, metabolism, location, meteorology and stress conditions. Based on the findings a greenbelt design was proposed to improve the air quality of the mining and transportation areas.https://doi.org/10.1186/s42834-019-0039-yJCFPMDACGreen BeltBiofilterAPTI
spellingShingle Shailendra K. Singh
Ranjeet K. Singh
Raj S. Singh
Debjit Pal
Krishnakant K. Singh
Pradeep K. Singh
Screening potential plant species for arresting particulates in Jharia coalfield, India
Sustainable Environment Research
JCF
PM
DAC
Green Belt
Biofilter
APTI
title Screening potential plant species for arresting particulates in Jharia coalfield, India
title_full Screening potential plant species for arresting particulates in Jharia coalfield, India
title_fullStr Screening potential plant species for arresting particulates in Jharia coalfield, India
title_full_unstemmed Screening potential plant species for arresting particulates in Jharia coalfield, India
title_short Screening potential plant species for arresting particulates in Jharia coalfield, India
title_sort screening potential plant species for arresting particulates in jharia coalfield india
topic JCF
PM
DAC
Green Belt
Biofilter
APTI
url https://doi.org/10.1186/s42834-019-0039-y
work_keys_str_mv AT shailendraksingh screeningpotentialplantspeciesforarrestingparticulatesinjhariacoalfieldindia
AT ranjeetksingh screeningpotentialplantspeciesforarrestingparticulatesinjhariacoalfieldindia
AT rajssingh screeningpotentialplantspeciesforarrestingparticulatesinjhariacoalfieldindia
AT debjitpal screeningpotentialplantspeciesforarrestingparticulatesinjhariacoalfieldindia
AT krishnakantksingh screeningpotentialplantspeciesforarrestingparticulatesinjhariacoalfieldindia
AT pradeepksingh screeningpotentialplantspeciesforarrestingparticulatesinjhariacoalfieldindia