Comparison of aqueous secondary organic aerosol (aqSOA) product distributions from guaiacol oxidation by non-phenolic and phenolic methoxybenzaldehydes as photosensitizers in the absence and presence of ammonium nitrate

<p>Aromatic carbonyls (e.g., methoxybenzaldehydes), an important class of photosensitizers, are abundant in the atmosphere. Photosensitization and nitrate-mediated photo-oxidation can occur simultaneously, yet studies about their interactions, particularly for aqueous secondary organic aerosol...

Full description

Bibliographic Details
Main Authors: B. R. G. Mabato, Y. J. Li, D. D. Huang, Y. Wang, C. K. Chan
Format: Article
Language:English
Published: Copernicus Publications 2023-03-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/23/2859/2023/acp-23-2859-2023.pdf
Description
Summary:<p>Aromatic carbonyls (e.g., methoxybenzaldehydes), an important class of photosensitizers, are abundant in the atmosphere. Photosensitization and nitrate-mediated photo-oxidation can occur simultaneously, yet studies about their interactions, particularly for aqueous secondary organic aerosol (aqSOA) formation, remain limited. This study compared non-phenolic (3,4-dimethoxybenzaldehyde, DMB) and phenolic (vanillin, VL) methoxybenzaldehydes as photosensitizers for aqSOA formation via guaiacol (GUA) oxidation in the absence and presence of ammonium nitrate (AN) under atmospherically relevant cloud and fog conditions. GUA oxidation by triplet excited states of DMB (<span class="inline-formula"><sup>3</sup></span>DMB<span class="inline-formula"><sup>∗</sup></span>) (GUA <span class="inline-formula">+</span> DMB) was <span class="inline-formula">∼</span> 4 times faster and exhibited greater light absorption than oxidation by <span class="inline-formula"><sup>3</sup></span>VL<span class="inline-formula"><sup>∗</sup></span> (GUA <span class="inline-formula">+</span> VL). Both GUA <span class="inline-formula">+</span> DMB and GUA <span class="inline-formula">+</span> VL formed aqSOA composed of oligomers, functionalized monomers, oxygenated ring-opening species, and N-containing products in the presence of AN. The observation of N-heterocycles such as imidazoles indicates the participation of ammonium in the reactions. The majority of generated aqSOA comprises potential brown carbon (BrC) chromophores. Oligomerization and functionalization dominated in GUA <span class="inline-formula">+</span> DMB and GUA <span class="inline-formula">+</span> VL, but functionalization appeared to be more important in GUA <span class="inline-formula">+</span> VL due to contributions from VL itself. AN did not significantly affect the oxidation kinetics, but it had distinct effects on the product distributions, likely due to differences in the photosensitizing abilities and structural features of DMB and VL. In particular, the more extensive fragmentation in GUA <span class="inline-formula">+</span> DMB than in GUA <span class="inline-formula">+</span> VL likely generated more N-containing products in GUA <span class="inline-formula">+</span> DMB <span class="inline-formula">+</span> AN. In GUA <span class="inline-formula">+</span> VL <span class="inline-formula">+</span> AN, the increased oligomers may be due to VL-derived phenoxy radicals induced by <span class="inline-formula"><sup><span class="Radical">⚫</span></sup></span>OH or <span class="inline-formula"><sup><span class="Radical">⚫</span></sup></span>NO<span class="inline-formula"><sub>2</sub></span> from nitrate photolysis. Furthermore, increased nitrated products observed in the presence of both DMB or VL and AN than in AN alone imply that photosensitized reactions may promote nitration. This work demonstrates how the structural features of photosensitizers affect aqSOA formation via non-carbonyl phenol oxidation. Potential interactions between photosensitization and AN photolysis were also elucidated. These findings facilitate a better understanding of photosensitized aqSOA formation and highlight the importance of AN photolysis in these reactions.</p>
ISSN:1680-7316
1680-7324