An initial ULF wave index derived from 2 years of Swarm observations

The ongoing Swarm satellite mission provides an opportunity for better knowledge of the near-Earth electromagnetic environment. Herein, we use a new methodological approach for the detection and classification of ultra low-frequency (ULF) wave events observed by Swarm based on an existing time-f...

Full description

Bibliographic Details
Main Authors: C. Papadimitriou, G. Balasis, I. A. Daglis, O. Giannakis
Format: Article
Language:English
Published: Copernicus Publications 2018-03-01
Series:Annales Geophysicae
Online Access:https://www.ann-geophys.net/36/287/2018/angeo-36-287-2018.pdf
Description
Summary:The ongoing Swarm satellite mission provides an opportunity for better knowledge of the near-Earth electromagnetic environment. Herein, we use a new methodological approach for the detection and classification of ultra low-frequency (ULF) wave events observed by Swarm based on an existing time-frequency analysis (TFA) tool and utilizing a state-of-the-art high-resolution magnetic field model and Swarm Level 2 products (i.e., field-aligned currents – FACs – and the Ionospheric Bubble Index – IBI). We present maps of the dependence of ULF wave power with magnetic latitude and magnetic local time (MLT) as well as geographic latitude and longitude from the three satellites at their different locations in low-Earth orbit (LEO) for a period spanning 2 years after the constellation's final configuration. We show that the inclusion of the Swarm single-spacecraft FAC product in our analysis eliminates all the wave activity at high altitudes, which is physically unrealistic. Moreover, we derive a Swarm orbit-by-orbit Pc3 wave (20–100 MHz) index for the topside ionosphere and compare its values with the corresponding variations of solar wind variables and geomagnetic activity indices. This is the first attempt, to our knowledge, to derive a ULF wave index from LEO satellite data. The technique can be potentially used to define a new Level 2 product from the mission, the Swarm ULF wave index, which would be suitable for space weather applications.
ISSN:0992-7689
1432-0576