Intersecting near-real time fluvial and pluvial inundation estimates with sociodemographic vulnerability to quantify a household flood impact index
<p>Increased interest in combining compound flood hazards and social vulnerability has driven recent advances in flood impact mapping. However, current methods to estimate event-specific compound flooding at the household level require high-performance computing resources frequently not availa...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2022-08-01
|
Series: | Hydrology and Earth System Sciences |
Online Access: | https://hess.copernicus.org/articles/26/3941/2022/hess-26-3941-2022.pdf |
_version_ | 1811221615968518144 |
---|---|
author | M. Preisser M. Preisser P. Passalacqua R. P. Bixler J. Hofmann |
author_facet | M. Preisser M. Preisser P. Passalacqua R. P. Bixler J. Hofmann |
author_sort | M. Preisser |
collection | DOAJ |
description | <p>Increased interest in combining compound flood hazards and social vulnerability has driven recent advances in flood impact mapping. However, current methods to estimate event-specific compound flooding at the household level require high-performance computing resources frequently not available to local stakeholders. Government and non-governmental agencies currently lack the methods to repeatedly and rapidly create flood impact maps that incorporate the local variability in both hazards and social vulnerability. We address this gap by developing a methodology to estimate a flood impact index at the household level in near-real time, utilizing high-resolution elevation data to approximate event-specific inundation from both pluvial and fluvial sources in conjunction with a social vulnerability index. Our analysis uses the 2015 Memorial Day flood in Austin, Texas, as a case study and proof of concept for our methodology. We show that 37 % of the census block groups in the study area experience flooding from only pluvial sources and are not identified in local or national flood hazard maps as being at risk. Furthermore, averaging hazard estimates to cartographic boundaries masks household variability, with 60 % of the census block groups in the study area having a coefficient of variation around the mean flood depth exceeding 50 %. Comparing our pluvial flooding estimates to a 2D physics-based model, we classify household impact accurately for 92 % of households. Our methodology can be used as a tool to create household compound flood impact maps to provide computationally efficient information to local stakeholders.</p> |
first_indexed | 2024-04-12T08:03:49Z |
format | Article |
id | doaj.art-c3f13143afda40abb5065f31304478c7 |
institution | Directory Open Access Journal |
issn | 1027-5606 1607-7938 |
language | English |
last_indexed | 2024-04-12T08:03:49Z |
publishDate | 2022-08-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Hydrology and Earth System Sciences |
spelling | doaj.art-c3f13143afda40abb5065f31304478c72022-12-22T03:41:15ZengCopernicus PublicationsHydrology and Earth System Sciences1027-56061607-79382022-08-01263941396410.5194/hess-26-3941-2022Intersecting near-real time fluvial and pluvial inundation estimates with sociodemographic vulnerability to quantify a household flood impact indexM. Preisser0M. Preisser1P. Passalacqua2R. P. Bixler3J. Hofmann4Environmental and Water Resources Engineering, University of Texas at Austin, Austin, Texas, USALBJ School of Public Affairs, University of Texas at Austin, Austin, Texas, USAEnvironmental and Water Resources Engineering, University of Texas at Austin, Austin, Texas, USALBJ School of Public Affairs, University of Texas at Austin, Austin, Texas, USAInstitute of Hydraulic Engineering and Water Resources Management, RWTH Aachen University, Aachen, Germany<p>Increased interest in combining compound flood hazards and social vulnerability has driven recent advances in flood impact mapping. However, current methods to estimate event-specific compound flooding at the household level require high-performance computing resources frequently not available to local stakeholders. Government and non-governmental agencies currently lack the methods to repeatedly and rapidly create flood impact maps that incorporate the local variability in both hazards and social vulnerability. We address this gap by developing a methodology to estimate a flood impact index at the household level in near-real time, utilizing high-resolution elevation data to approximate event-specific inundation from both pluvial and fluvial sources in conjunction with a social vulnerability index. Our analysis uses the 2015 Memorial Day flood in Austin, Texas, as a case study and proof of concept for our methodology. We show that 37 % of the census block groups in the study area experience flooding from only pluvial sources and are not identified in local or national flood hazard maps as being at risk. Furthermore, averaging hazard estimates to cartographic boundaries masks household variability, with 60 % of the census block groups in the study area having a coefficient of variation around the mean flood depth exceeding 50 %. Comparing our pluvial flooding estimates to a 2D physics-based model, we classify household impact accurately for 92 % of households. Our methodology can be used as a tool to create household compound flood impact maps to provide computationally efficient information to local stakeholders.</p>https://hess.copernicus.org/articles/26/3941/2022/hess-26-3941-2022.pdf |
spellingShingle | M. Preisser M. Preisser P. Passalacqua R. P. Bixler J. Hofmann Intersecting near-real time fluvial and pluvial inundation estimates with sociodemographic vulnerability to quantify a household flood impact index Hydrology and Earth System Sciences |
title | Intersecting near-real time fluvial and pluvial inundation estimates with sociodemographic vulnerability to quantify a household flood impact index |
title_full | Intersecting near-real time fluvial and pluvial inundation estimates with sociodemographic vulnerability to quantify a household flood impact index |
title_fullStr | Intersecting near-real time fluvial and pluvial inundation estimates with sociodemographic vulnerability to quantify a household flood impact index |
title_full_unstemmed | Intersecting near-real time fluvial and pluvial inundation estimates with sociodemographic vulnerability to quantify a household flood impact index |
title_short | Intersecting near-real time fluvial and pluvial inundation estimates with sociodemographic vulnerability to quantify a household flood impact index |
title_sort | intersecting near real time fluvial and pluvial inundation estimates with sociodemographic vulnerability to quantify a household flood impact index |
url | https://hess.copernicus.org/articles/26/3941/2022/hess-26-3941-2022.pdf |
work_keys_str_mv | AT mpreisser intersectingnearrealtimefluvialandpluvialinundationestimateswithsociodemographicvulnerabilitytoquantifyahouseholdfloodimpactindex AT mpreisser intersectingnearrealtimefluvialandpluvialinundationestimateswithsociodemographicvulnerabilitytoquantifyahouseholdfloodimpactindex AT ppassalacqua intersectingnearrealtimefluvialandpluvialinundationestimateswithsociodemographicvulnerabilitytoquantifyahouseholdfloodimpactindex AT rpbixler intersectingnearrealtimefluvialandpluvialinundationestimateswithsociodemographicvulnerabilitytoquantifyahouseholdfloodimpactindex AT jhofmann intersectingnearrealtimefluvialandpluvialinundationestimateswithsociodemographicvulnerabilitytoquantifyahouseholdfloodimpactindex |