Actigraphic Sensors Describe Stroke Severity in the Acute Phase: Implementing Multi-Parametric Monitoring in Stroke Unit

Actigraphy is a tool used to describe limb motor activity. Some actigraphic parameters, namely Motor Activity (MA) and Asymmetry Index (AR), correlate with stroke severity. However, a long-lasting actigraphic monitoring was never performed previously. We hypothesized that MA and AR can describe diff...

Full description

Bibliographic Details
Main Authors: Giuseppe Reale, Chiara Iacovelli, Marco Rabuffetti, Paolo Manganotti, Lucio Marinelli, Simona Sacco, Giovanni Furlanis, Miloš Ajčević, Aurelia Zauli, Marco Moci, Silvia Giovannini, Simona Crosetti, Matteo Grazzini, Stefano Filippo Castiglia, Matteo Podestà, Paolo Calabresi, Maurizio Ferrarin, Pietro Caliandro
Format: Article
Language:English
Published: MDPI AG 2023-02-01
Series:Journal of Clinical Medicine
Subjects:
Online Access:https://www.mdpi.com/2077-0383/12/3/1178
_version_ 1797624083332988928
author Giuseppe Reale
Chiara Iacovelli
Marco Rabuffetti
Paolo Manganotti
Lucio Marinelli
Simona Sacco
Giovanni Furlanis
Miloš Ajčević
Aurelia Zauli
Marco Moci
Silvia Giovannini
Simona Crosetti
Matteo Grazzini
Stefano Filippo Castiglia
Matteo Podestà
Paolo Calabresi
Maurizio Ferrarin
Pietro Caliandro
author_facet Giuseppe Reale
Chiara Iacovelli
Marco Rabuffetti
Paolo Manganotti
Lucio Marinelli
Simona Sacco
Giovanni Furlanis
Miloš Ajčević
Aurelia Zauli
Marco Moci
Silvia Giovannini
Simona Crosetti
Matteo Grazzini
Stefano Filippo Castiglia
Matteo Podestà
Paolo Calabresi
Maurizio Ferrarin
Pietro Caliandro
author_sort Giuseppe Reale
collection DOAJ
description Actigraphy is a tool used to describe limb motor activity. Some actigraphic parameters, namely Motor Activity (MA) and Asymmetry Index (AR), correlate with stroke severity. However, a long-lasting actigraphic monitoring was never performed previously. We hypothesized that MA and AR can describe different clinical conditions during the evolution of the acute phase of stroke. We conducted a multicenter study and enrolled 69 stroke patients. NIHSS was assessed every hour and upper limbs’ motor activity was continuously recorded. We calculated MA and AR in the first hour after admission, after a significant clinical change (NIHSS ± 4) or at discharge. In a control group of 17 subjects, we calculated MA and AR normative values. We defined the best model to predict clinical status with multiple linear regression and identified actigraphic cut-off values to discriminate minor from major stroke (NIHSS ≥ 5) and NIHSS 5–9 from NIHSS ≥ 10. The AR cut-off value to discriminate between minor and major stroke (namely NIHSS ≥ 5) is 27% (sensitivity = 83%, specificity = 76% (AUC 0.86 <i>p</i> < 0.001), PPV = 89%, NPV = 42%). However, the combination of AR and MA of the non-paretic arm is the best model to predict NIHSS score (R<sup>2</sup>: 0.482, F: 54.13), discriminating minor from major stroke (sensitivity = 89%, specificity = 82%, PPV = 92%, NPV = 75%). The AR cut-off value of 53% identifies very severe stroke patients (NIHSS ≥ 10) (sensitivity = 82%, specificity = 74% (AUC 0.86 <i>p</i> < 0.001), PPV = 73%, NPV = 82%). Actigraphic parameters can reliably describe the overall severity of stroke patients with motor symptoms, supporting the addition of a wearable actigraphic system to the multi-parametric monitoring in stroke units.
first_indexed 2024-03-11T09:38:18Z
format Article
id doaj.art-c3f823a56b714fd29947ae02f9b25425
institution Directory Open Access Journal
issn 2077-0383
language English
last_indexed 2024-03-11T09:38:18Z
publishDate 2023-02-01
publisher MDPI AG
record_format Article
series Journal of Clinical Medicine
spelling doaj.art-c3f823a56b714fd29947ae02f9b254252023-11-16T17:12:53ZengMDPI AGJournal of Clinical Medicine2077-03832023-02-01123117810.3390/jcm12031178Actigraphic Sensors Describe Stroke Severity in the Acute Phase: Implementing Multi-Parametric Monitoring in Stroke UnitGiuseppe Reale0Chiara Iacovelli1Marco Rabuffetti2Paolo Manganotti3Lucio Marinelli4Simona Sacco5Giovanni Furlanis6Miloš Ajčević7Aurelia Zauli8Marco Moci9Silvia Giovannini10Simona Crosetti11Matteo Grazzini12Stefano Filippo Castiglia13Matteo Podestà14Paolo Calabresi15Maurizio Ferrarin16Pietro Caliandro17UOC Neuroriabilitazione ad Alta Intensità, Dipartimento Neuroscienze, Organi di Senso, Torace, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, ItalyDepartment of Emergency, Anaesthesiology and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, ItalyIRCCS Fondazione Don Carlo Gnocchi, 20148 Milan, ItalyClinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, Trieste University Hospital, University of Trieste, 34149 Trieste, ItalyIRCCS Ospedale Policlinico San Martino, Department of Neuroscience, Division of Clinical Neurophysiology, 16132 Genova, ItalyDepartment of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, ItalyClinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, Trieste University Hospital, University of Trieste, 34149 Trieste, ItalyClinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, Trieste University Hospital, University of Trieste, 34149 Trieste, ItalyDepartment of Neuroscience, Catholic University of the Sacred Hearth, 00168 Rome, ItalyDepartment of Neuroscience, Catholic University of the Sacred Hearth, 00168 Rome, ItalyUOC Neuroriabilitazione ad Alta Intensità, Dipartimento Neuroscienze, Organi di Senso, Torace, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, ItalyIRCCS Ospedale Policlinico San Martino, Department of Neuroscience, Division of Clinical Neurophysiology, 16132 Genova, ItalyDepartment of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genova, ItalyDepartment of Medical and Surgical Sciences and Biotechnologies, “Sapienza” University of Rome-Polo Pontino, 04100 Latina, ItalyUOC Neurologia, Dipartimento Neuroscienze, Organi di Senso, Torace, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, ItalyDepartment of Neuroscience, Catholic University of the Sacred Hearth, 00168 Rome, ItalyIRCCS Fondazione Don Carlo Gnocchi, 20148 Milan, ItalyUOC Neurologia, Dipartimento Neuroscienze, Organi di Senso, Torace, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, ItalyActigraphy is a tool used to describe limb motor activity. Some actigraphic parameters, namely Motor Activity (MA) and Asymmetry Index (AR), correlate with stroke severity. However, a long-lasting actigraphic monitoring was never performed previously. We hypothesized that MA and AR can describe different clinical conditions during the evolution of the acute phase of stroke. We conducted a multicenter study and enrolled 69 stroke patients. NIHSS was assessed every hour and upper limbs’ motor activity was continuously recorded. We calculated MA and AR in the first hour after admission, after a significant clinical change (NIHSS ± 4) or at discharge. In a control group of 17 subjects, we calculated MA and AR normative values. We defined the best model to predict clinical status with multiple linear regression and identified actigraphic cut-off values to discriminate minor from major stroke (NIHSS ≥ 5) and NIHSS 5–9 from NIHSS ≥ 10. The AR cut-off value to discriminate between minor and major stroke (namely NIHSS ≥ 5) is 27% (sensitivity = 83%, specificity = 76% (AUC 0.86 <i>p</i> < 0.001), PPV = 89%, NPV = 42%). However, the combination of AR and MA of the non-paretic arm is the best model to predict NIHSS score (R<sup>2</sup>: 0.482, F: 54.13), discriminating minor from major stroke (sensitivity = 89%, specificity = 82%, PPV = 92%, NPV = 75%). The AR cut-off value of 53% identifies very severe stroke patients (NIHSS ≥ 10) (sensitivity = 82%, specificity = 74% (AUC 0.86 <i>p</i> < 0.001), PPV = 73%, NPV = 82%). Actigraphic parameters can reliably describe the overall severity of stroke patients with motor symptoms, supporting the addition of a wearable actigraphic system to the multi-parametric monitoring in stroke units.https://www.mdpi.com/2077-0383/12/3/1178ischemic strokeactigraphyactigraphic parametersactigraphic sensorsacute strokestroke unit
spellingShingle Giuseppe Reale
Chiara Iacovelli
Marco Rabuffetti
Paolo Manganotti
Lucio Marinelli
Simona Sacco
Giovanni Furlanis
Miloš Ajčević
Aurelia Zauli
Marco Moci
Silvia Giovannini
Simona Crosetti
Matteo Grazzini
Stefano Filippo Castiglia
Matteo Podestà
Paolo Calabresi
Maurizio Ferrarin
Pietro Caliandro
Actigraphic Sensors Describe Stroke Severity in the Acute Phase: Implementing Multi-Parametric Monitoring in Stroke Unit
Journal of Clinical Medicine
ischemic stroke
actigraphy
actigraphic parameters
actigraphic sensors
acute stroke
stroke unit
title Actigraphic Sensors Describe Stroke Severity in the Acute Phase: Implementing Multi-Parametric Monitoring in Stroke Unit
title_full Actigraphic Sensors Describe Stroke Severity in the Acute Phase: Implementing Multi-Parametric Monitoring in Stroke Unit
title_fullStr Actigraphic Sensors Describe Stroke Severity in the Acute Phase: Implementing Multi-Parametric Monitoring in Stroke Unit
title_full_unstemmed Actigraphic Sensors Describe Stroke Severity in the Acute Phase: Implementing Multi-Parametric Monitoring in Stroke Unit
title_short Actigraphic Sensors Describe Stroke Severity in the Acute Phase: Implementing Multi-Parametric Monitoring in Stroke Unit
title_sort actigraphic sensors describe stroke severity in the acute phase implementing multi parametric monitoring in stroke unit
topic ischemic stroke
actigraphy
actigraphic parameters
actigraphic sensors
acute stroke
stroke unit
url https://www.mdpi.com/2077-0383/12/3/1178
work_keys_str_mv AT giuseppereale actigraphicsensorsdescribestrokeseverityintheacutephaseimplementingmultiparametricmonitoringinstrokeunit
AT chiaraiacovelli actigraphicsensorsdescribestrokeseverityintheacutephaseimplementingmultiparametricmonitoringinstrokeunit
AT marcorabuffetti actigraphicsensorsdescribestrokeseverityintheacutephaseimplementingmultiparametricmonitoringinstrokeunit
AT paolomanganotti actigraphicsensorsdescribestrokeseverityintheacutephaseimplementingmultiparametricmonitoringinstrokeunit
AT luciomarinelli actigraphicsensorsdescribestrokeseverityintheacutephaseimplementingmultiparametricmonitoringinstrokeunit
AT simonasacco actigraphicsensorsdescribestrokeseverityintheacutephaseimplementingmultiparametricmonitoringinstrokeunit
AT giovannifurlanis actigraphicsensorsdescribestrokeseverityintheacutephaseimplementingmultiparametricmonitoringinstrokeunit
AT milosajcevic actigraphicsensorsdescribestrokeseverityintheacutephaseimplementingmultiparametricmonitoringinstrokeunit
AT aureliazauli actigraphicsensorsdescribestrokeseverityintheacutephaseimplementingmultiparametricmonitoringinstrokeunit
AT marcomoci actigraphicsensorsdescribestrokeseverityintheacutephaseimplementingmultiparametricmonitoringinstrokeunit
AT silviagiovannini actigraphicsensorsdescribestrokeseverityintheacutephaseimplementingmultiparametricmonitoringinstrokeunit
AT simonacrosetti actigraphicsensorsdescribestrokeseverityintheacutephaseimplementingmultiparametricmonitoringinstrokeunit
AT matteograzzini actigraphicsensorsdescribestrokeseverityintheacutephaseimplementingmultiparametricmonitoringinstrokeunit
AT stefanofilippocastiglia actigraphicsensorsdescribestrokeseverityintheacutephaseimplementingmultiparametricmonitoringinstrokeunit
AT matteopodesta actigraphicsensorsdescribestrokeseverityintheacutephaseimplementingmultiparametricmonitoringinstrokeunit
AT paolocalabresi actigraphicsensorsdescribestrokeseverityintheacutephaseimplementingmultiparametricmonitoringinstrokeunit
AT maurizioferrarin actigraphicsensorsdescribestrokeseverityintheacutephaseimplementingmultiparametricmonitoringinstrokeunit
AT pietrocaliandro actigraphicsensorsdescribestrokeseverityintheacutephaseimplementingmultiparametricmonitoringinstrokeunit