Robust Nonsmooth Interval-Valued Optimization Problems Involving Uncertainty Constraints
In this paper, Karush-Kuhn-Tucker type robust necessary optimality conditions for a robust nonsmooth interval-valued optimization problem (UCIVOP) are formulated using the concept of LU-optimal solution and the generalized robust Slater constraint qualification (GRSCQ). These Karush-Kuhn-Tucker type...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-05-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/10/11/1787 |
Summary: | In this paper, Karush-Kuhn-Tucker type robust necessary optimality conditions for a robust nonsmooth interval-valued optimization problem (UCIVOP) are formulated using the concept of LU-optimal solution and the generalized robust Slater constraint qualification (GRSCQ). These Karush-Kuhn-Tucker type robust necessary conditions are shown to be sufficient optimality conditions under generalized convexity. The Wolfe and Mond-Weir type robust dual problems are formulated over cones using generalized convexity assumptions, and usual duality results are established. The presented results are illustrated by non-trivial examples. |
---|---|
ISSN: | 2227-7390 |