A global diatom database – abundance, biovolume and biomass in the world ocean

Phytoplankton identification and abundance data are now commonly feeding plankton distribution databases worldwide. This study is a first attempt to compile the largest possible body of data available from different databases as well as from individual published or unpublished datasets regarding dia...

Full description

Bibliographic Details
Main Authors: K. Leblanc, J. Arístegui, L. Armand, P. Assmy, B. Beker, A. Bode, E. Breton, V. Cornet, J. Gibson, M.-P. Gosselin, E. Kopczynska, H. Marshall, J. Peloquin, S. Piontkovski, A. J. Poulton, B. Quéguiner, R. Schiebel, R. Shipe, J. Stefels, M. A. van Leeuwe, M. Varela, C. Widdicombe, M. Yallop
Format: Article
Language:English
Published: Copernicus Publications 2012-11-01
Series:Earth System Science Data
Online Access:http://www.earth-syst-sci-data.net/4/149/2012/essd-4-149-2012.pdf
_version_ 1817969716872871936
author K. Leblanc
J. Arístegui
L. Armand
P. Assmy
B. Beker
A. Bode
E. Breton
V. Cornet
J. Gibson
M.-P. Gosselin
E. Kopczynska
H. Marshall
J. Peloquin
S. Piontkovski
A. J. Poulton
B. Quéguiner
R. Schiebel
R. Shipe
J. Stefels
M. A. van Leeuwe
M. Varela
C. Widdicombe
M. Yallop
author_facet K. Leblanc
J. Arístegui
L. Armand
P. Assmy
B. Beker
A. Bode
E. Breton
V. Cornet
J. Gibson
M.-P. Gosselin
E. Kopczynska
H. Marshall
J. Peloquin
S. Piontkovski
A. J. Poulton
B. Quéguiner
R. Schiebel
R. Shipe
J. Stefels
M. A. van Leeuwe
M. Varela
C. Widdicombe
M. Yallop
author_sort K. Leblanc
collection DOAJ
description Phytoplankton identification and abundance data are now commonly feeding plankton distribution databases worldwide. This study is a first attempt to compile the largest possible body of data available from different databases as well as from individual published or unpublished datasets regarding diatom distribution in the world ocean. The data obtained originate from time series studies as well as spatial studies. This effort is supported by the Marine Ecosystem Model Inter-Comparison Project (MAREMIP), which aims at building consistent datasets for the main plankton functional types (PFTs) in order to help validate biogeochemical ocean models by using carbon (C) biomass derived from abundance data. In this study we collected over 293 000 individual geo-referenced data points with diatom abundances from bottle and net sampling. Sampling site distribution was not homogeneous, with 58% of data in the Atlantic, 20% in the Arctic, 12% in the Pacific, 8% in the Indian and 1% in the Southern Ocean. A total of 136 different genera and 607 different species were identified after spell checking and name correction. Only a small fraction of these data were also documented for biovolumes and an even smaller fraction was converted to C biomass. As it is virtually impossible to reconstruct everyone's method for biovolume calculation, which is usually not indicated in the datasets, we decided to undertake the effort to document, for every distinct species, the minimum and maximum cell dimensions, and to convert all the available abundance data into biovolumes and C biomass using a single standardized method. Statistical correction of the database was also adopted to exclude potential outliers and suspicious data points. The final database contains 90 648 data points with converted C biomass. Diatom C biomass calculated from cell sizes spans over eight orders of magnitude. The mean diatom biomass for individual locations, dates and depths is 141.19 μg C l<sup>−1</sup>, while the median value is 11.16 μg C l<sup>−1</sup>. Regarding biomass distribution, 19% of data are in the range 0–1 μg C l<sup>−1</sup>, 29% in the range 1–10 μg C l<sup>−1</sup>, 31% in the range 10–100 μg C l<sup>−1</sup>, 18% in the range 100–1000 μg C l<sup>−1</sup>, and only 3% > 1000 μg C l<sup>−1</sup>. Interestingly, less than 50 species contributed to > 90% of global biomass, among which centric species were dominant. Thus, placing significant efforts on cell size measurements, process studies and C quota calculations of these species should considerably improve biomass estimates in the upcoming years. A first-order estimate of the diatom biomass for the global ocean ranges from 444 to 582 Tg C, which converts to 3 to 4 Tmol Si and to an average Si biomass turnover rate of 0.15 to 0.19 d<sup>−1</sup>. Link to the dataset: <a href="http://dx.doi.org/10.1594/PANGAEA.777384"target="_blank">doi:10.1594/PANGAEA.777384</a>.
first_indexed 2024-04-13T20:24:53Z
format Article
id doaj.art-c4142d1b3fc24e63b55ce81ea8731b6d
institution Directory Open Access Journal
issn 1866-3508
1866-3516
language English
last_indexed 2024-04-13T20:24:53Z
publishDate 2012-11-01
publisher Copernicus Publications
record_format Article
series Earth System Science Data
spelling doaj.art-c4142d1b3fc24e63b55ce81ea8731b6d2022-12-22T02:31:24ZengCopernicus PublicationsEarth System Science Data1866-35081866-35162012-11-014114916510.5194/essd-4-149-2012A global diatom database – abundance, biovolume and biomass in the world oceanK. LeblancJ. ArísteguiL. ArmandP. AssmyB. BekerA. BodeE. BretonV. CornetJ. GibsonM.-P. GosselinE. KopczynskaH. MarshallJ. PeloquinS. PiontkovskiA. J. PoultonB. QuéguinerR. SchiebelR. ShipeJ. StefelsM. A. van LeeuweM. VarelaC. WiddicombeM. YallopPhytoplankton identification and abundance data are now commonly feeding plankton distribution databases worldwide. This study is a first attempt to compile the largest possible body of data available from different databases as well as from individual published or unpublished datasets regarding diatom distribution in the world ocean. The data obtained originate from time series studies as well as spatial studies. This effort is supported by the Marine Ecosystem Model Inter-Comparison Project (MAREMIP), which aims at building consistent datasets for the main plankton functional types (PFTs) in order to help validate biogeochemical ocean models by using carbon (C) biomass derived from abundance data. In this study we collected over 293 000 individual geo-referenced data points with diatom abundances from bottle and net sampling. Sampling site distribution was not homogeneous, with 58% of data in the Atlantic, 20% in the Arctic, 12% in the Pacific, 8% in the Indian and 1% in the Southern Ocean. A total of 136 different genera and 607 different species were identified after spell checking and name correction. Only a small fraction of these data were also documented for biovolumes and an even smaller fraction was converted to C biomass. As it is virtually impossible to reconstruct everyone's method for biovolume calculation, which is usually not indicated in the datasets, we decided to undertake the effort to document, for every distinct species, the minimum and maximum cell dimensions, and to convert all the available abundance data into biovolumes and C biomass using a single standardized method. Statistical correction of the database was also adopted to exclude potential outliers and suspicious data points. The final database contains 90 648 data points with converted C biomass. Diatom C biomass calculated from cell sizes spans over eight orders of magnitude. The mean diatom biomass for individual locations, dates and depths is 141.19 μg C l<sup>−1</sup>, while the median value is 11.16 μg C l<sup>−1</sup>. Regarding biomass distribution, 19% of data are in the range 0–1 μg C l<sup>−1</sup>, 29% in the range 1–10 μg C l<sup>−1</sup>, 31% in the range 10–100 μg C l<sup>−1</sup>, 18% in the range 100–1000 μg C l<sup>−1</sup>, and only 3% > 1000 μg C l<sup>−1</sup>. Interestingly, less than 50 species contributed to > 90% of global biomass, among which centric species were dominant. Thus, placing significant efforts on cell size measurements, process studies and C quota calculations of these species should considerably improve biomass estimates in the upcoming years. A first-order estimate of the diatom biomass for the global ocean ranges from 444 to 582 Tg C, which converts to 3 to 4 Tmol Si and to an average Si biomass turnover rate of 0.15 to 0.19 d<sup>−1</sup>. Link to the dataset: <a href="http://dx.doi.org/10.1594/PANGAEA.777384"target="_blank">doi:10.1594/PANGAEA.777384</a>.http://www.earth-syst-sci-data.net/4/149/2012/essd-4-149-2012.pdf
spellingShingle K. Leblanc
J. Arístegui
L. Armand
P. Assmy
B. Beker
A. Bode
E. Breton
V. Cornet
J. Gibson
M.-P. Gosselin
E. Kopczynska
H. Marshall
J. Peloquin
S. Piontkovski
A. J. Poulton
B. Quéguiner
R. Schiebel
R. Shipe
J. Stefels
M. A. van Leeuwe
M. Varela
C. Widdicombe
M. Yallop
A global diatom database – abundance, biovolume and biomass in the world ocean
Earth System Science Data
title A global diatom database – abundance, biovolume and biomass in the world ocean
title_full A global diatom database – abundance, biovolume and biomass in the world ocean
title_fullStr A global diatom database – abundance, biovolume and biomass in the world ocean
title_full_unstemmed A global diatom database – abundance, biovolume and biomass in the world ocean
title_short A global diatom database – abundance, biovolume and biomass in the world ocean
title_sort global diatom database abundance biovolume and biomass in the world ocean
url http://www.earth-syst-sci-data.net/4/149/2012/essd-4-149-2012.pdf
work_keys_str_mv AT kleblanc aglobaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT jaristegui aglobaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT larmand aglobaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT passmy aglobaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT bbeker aglobaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT abode aglobaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT ebreton aglobaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT vcornet aglobaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT jgibson aglobaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT mpgosselin aglobaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT ekopczynska aglobaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT hmarshall aglobaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT jpeloquin aglobaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT spiontkovski aglobaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT ajpoulton aglobaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT bqueguiner aglobaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT rschiebel aglobaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT rshipe aglobaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT jstefels aglobaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT mavanleeuwe aglobaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT mvarela aglobaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT cwiddicombe aglobaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT myallop aglobaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT kleblanc globaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT jaristegui globaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT larmand globaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT passmy globaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT bbeker globaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT abode globaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT ebreton globaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT vcornet globaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT jgibson globaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT mpgosselin globaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT ekopczynska globaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT hmarshall globaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT jpeloquin globaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT spiontkovski globaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT ajpoulton globaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT bqueguiner globaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT rschiebel globaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT rshipe globaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT jstefels globaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT mavanleeuwe globaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT mvarela globaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT cwiddicombe globaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean
AT myallop globaldiatomdatabaseabundancebiovolumeandbiomassintheworldocean