Existence of solutions to nonlocal and singular elliptic problems via Galerkin method

We study the existence of solutions to the nonlocal elliptic equation $$ -M(|u|^2)Delta u = f(x,u) $$ with zero Dirichlet boundary conditions on a bounded and smooth domain of $mathbb{R}^n$. We consider the $M$-linear case with $fin H^{-1}(Omega )$, and the sub-linear case $f(u)=u^{alpha}$, $0<al...

Full description

Bibliographic Details
Main Authors: Francisco Julio S. A. Correa, Silvano D. B. Menezes
Format: Article
Language:English
Published: Texas State University 2004-02-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2004/19/abstr.html
_version_ 1819176127463161856
author Francisco Julio S. A. Correa
Silvano D. B. Menezes
author_facet Francisco Julio S. A. Correa
Silvano D. B. Menezes
author_sort Francisco Julio S. A. Correa
collection DOAJ
description We study the existence of solutions to the nonlocal elliptic equation $$ -M(|u|^2)Delta u = f(x,u) $$ with zero Dirichlet boundary conditions on a bounded and smooth domain of $mathbb{R}^n$. We consider the $M$-linear case with $fin H^{-1}(Omega )$, and the sub-linear case $f(u)=u^{alpha}$, $0<alpha <1$. Our main tool is the Galerkin method for both cases when $M$ continuous and when $M$ is discontinuous.
first_indexed 2024-12-22T21:05:49Z
format Article
id doaj.art-c42d36ecd18740f6b61818d0853a9cb2
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-12-22T21:05:49Z
publishDate 2004-02-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-c42d36ecd18740f6b61818d0853a9cb22022-12-21T18:12:40ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912004-02-01200419110Existence of solutions to nonlocal and singular elliptic problems via Galerkin methodFrancisco Julio S. A. CorreaSilvano D. B. MenezesWe study the existence of solutions to the nonlocal elliptic equation $$ -M(|u|^2)Delta u = f(x,u) $$ with zero Dirichlet boundary conditions on a bounded and smooth domain of $mathbb{R}^n$. We consider the $M$-linear case with $fin H^{-1}(Omega )$, and the sub-linear case $f(u)=u^{alpha}$, $0<alpha <1$. Our main tool is the Galerkin method for both cases when $M$ continuous and when $M$ is discontinuous.http://ejde.math.txstate.edu/Volumes/2004/19/abstr.htmlNonlocal elliptic problemsGalerkin Method.
spellingShingle Francisco Julio S. A. Correa
Silvano D. B. Menezes
Existence of solutions to nonlocal and singular elliptic problems via Galerkin method
Electronic Journal of Differential Equations
Nonlocal elliptic problems
Galerkin Method.
title Existence of solutions to nonlocal and singular elliptic problems via Galerkin method
title_full Existence of solutions to nonlocal and singular elliptic problems via Galerkin method
title_fullStr Existence of solutions to nonlocal and singular elliptic problems via Galerkin method
title_full_unstemmed Existence of solutions to nonlocal and singular elliptic problems via Galerkin method
title_short Existence of solutions to nonlocal and singular elliptic problems via Galerkin method
title_sort existence of solutions to nonlocal and singular elliptic problems via galerkin method
topic Nonlocal elliptic problems
Galerkin Method.
url http://ejde.math.txstate.edu/Volumes/2004/19/abstr.html
work_keys_str_mv AT franciscojuliosacorrea existenceofsolutionstononlocalandsingularellipticproblemsviagalerkinmethod
AT silvanodbmenezes existenceofsolutionstononlocalandsingularellipticproblemsviagalerkinmethod