Asymptotic behavior of ground state solutions for sublinear and singular nonlinear Dirichlet problems

In this article, we are concerned with the asymptotic behavior of the classical solution to the semilinear boundary-value problem $$ Delta u+a(x)u^{sigma }=0 $$ in $mathbb{R}^n$, $u>0$, $lim_{|x|o infty }u(x)=0$, where $sigma <1$. The special feature is to consider the function $a$...

Full description

Bibliographic Details
Main Authors: Rym Chemmam, Abdelwaheb Dhifli, Habib Maagli
Format: Article
Language:English
Published: Texas State University 2011-07-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2011/88/abstr.html
_version_ 1818777082551861248
author Rym Chemmam
Abdelwaheb Dhifli
Habib Maagli
author_facet Rym Chemmam
Abdelwaheb Dhifli
Habib Maagli
author_sort Rym Chemmam
collection DOAJ
description In this article, we are concerned with the asymptotic behavior of the classical solution to the semilinear boundary-value problem $$ Delta u+a(x)u^{sigma }=0 $$ in $mathbb{R}^n$, $u>0$, $lim_{|x|o infty }u(x)=0$, where $sigma <1$. The special feature is to consider the function $a$ in $C_{m loc}^{alpha }(mathbb{R}^n)$, $0<alpha <1$, such that there exists $c>0$ satisfying $$ frac{1}{c}frac{L(|x| +1)}{(1+|x| )^{lambda }} leq a(x)leq cfrac{L(|x| +1)}{(1+|x| )^{lambda }}, $$ where $L(t):=exp ig(int_1^tfrac{z(s)}{s}dsig)$, with $zin C([1,infty ))$ such that $lim_{to infty } z(t)=0$. The comparable asymptotic rate of $a(x)$ determines the asymptotic behavior of the solution.
first_indexed 2024-12-18T11:23:10Z
format Article
id doaj.art-c43aa8b61d474cbfbd7a9cca567678d6
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-12-18T11:23:10Z
publishDate 2011-07-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-c43aa8b61d474cbfbd7a9cca567678d62022-12-21T21:09:47ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912011-07-01201188,112Asymptotic behavior of ground state solutions for sublinear and singular nonlinear Dirichlet problemsRym ChemmamAbdelwaheb DhifliHabib MaagliIn this article, we are concerned with the asymptotic behavior of the classical solution to the semilinear boundary-value problem $$ Delta u+a(x)u^{sigma }=0 $$ in $mathbb{R}^n$, $u>0$, $lim_{|x|o infty }u(x)=0$, where $sigma <1$. The special feature is to consider the function $a$ in $C_{m loc}^{alpha }(mathbb{R}^n)$, $0<alpha <1$, such that there exists $c>0$ satisfying $$ frac{1}{c}frac{L(|x| +1)}{(1+|x| )^{lambda }} leq a(x)leq cfrac{L(|x| +1)}{(1+|x| )^{lambda }}, $$ where $L(t):=exp ig(int_1^tfrac{z(s)}{s}dsig)$, with $zin C([1,infty ))$ such that $lim_{to infty } z(t)=0$. The comparable asymptotic rate of $a(x)$ determines the asymptotic behavior of the solution.http://ejde.math.txstate.edu/Volumes/2011/88/abstr.htmlAsymptotic behaviorDirichlet problemground sate solutionsingular equationssublinear equations
spellingShingle Rym Chemmam
Abdelwaheb Dhifli
Habib Maagli
Asymptotic behavior of ground state solutions for sublinear and singular nonlinear Dirichlet problems
Electronic Journal of Differential Equations
Asymptotic behavior
Dirichlet problem
ground sate solution
singular equations
sublinear equations
title Asymptotic behavior of ground state solutions for sublinear and singular nonlinear Dirichlet problems
title_full Asymptotic behavior of ground state solutions for sublinear and singular nonlinear Dirichlet problems
title_fullStr Asymptotic behavior of ground state solutions for sublinear and singular nonlinear Dirichlet problems
title_full_unstemmed Asymptotic behavior of ground state solutions for sublinear and singular nonlinear Dirichlet problems
title_short Asymptotic behavior of ground state solutions for sublinear and singular nonlinear Dirichlet problems
title_sort asymptotic behavior of ground state solutions for sublinear and singular nonlinear dirichlet problems
topic Asymptotic behavior
Dirichlet problem
ground sate solution
singular equations
sublinear equations
url http://ejde.math.txstate.edu/Volumes/2011/88/abstr.html
work_keys_str_mv AT rymchemmam asymptoticbehaviorofgroundstatesolutionsforsublinearandsingularnonlineardirichletproblems
AT abdelwahebdhifli asymptoticbehaviorofgroundstatesolutionsforsublinearandsingularnonlineardirichletproblems
AT habibmaagli asymptoticbehaviorofgroundstatesolutionsforsublinearandsingularnonlineardirichletproblems