Об однородных солитонах Риччи на трехмерных локально однородных (псевдо)римановых пространствах с полусимметрической связностью
Солитоны Риччи являются естественным обобщением метрик Эйнштейна и представляют собой решение потока Риччи. В общем случае они исследовались многими математиками, что нашло отражение в обзорах Х.-Д. Цао, Р.М. Аройо — Р. Лафуэнте. Наиболее исследован данный вопрос в однородном римано-вом случае, а та...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Altai State University
2024-04-01
|
Series: | Известия Алтайского государственного университета |
Subjects: | |
Online Access: | http://izvestiya.asu.ru/article/view/14997 |
Summary: | Солитоны Риччи являются естественным обобщением метрик Эйнштейна и представляют собой решение потока Риччи. В общем случае они исследовались многими математиками, что нашло отражение в обзорах Х.-Д. Цао, Р.М. Аройо — Р. Лафуэнте. Наиболее исследован данный вопрос в однородном римано-вом случае, а также в случае тривиальных солитонов Риччи, или метрик Эйнштейна. В настоящей работе исследованы однородные солитоны Риччи на трехмерных локально однородных (псевдо)римановых пространствах с нетривиальной группой изотропии и полусимметрической связностью. Получена классификация однородных солитонов Риччи на трехмерных локально однородных (псевдо)римановых пространствах с полусимметрической связностью. Доказано, что в случае групп Ли существуют нетривиальные инваринтные солитоны Риччи. Ранее Л. Цербо показал, что на унимодулярных группах Ли с левоинвариантной римановой метрикой и связностью Леви-Чивиты все инвариантные солитоны Риччи тривиальны или являются метриками Эйнштейна. В неунимодулярном случае аналогичный результат до размерности четыре включительно получен П.Н. Клепиковым и Д.Н. Оскорбиным, а в случае размерности 5 и выше вопрос остается открытым. |
---|---|
ISSN: | 1561-9443 1561-9451 |