Metal-Organic Frameworks as Novel Photocatalysts: Opportunities for Catalyst Design

Metal-organic frameworks (MOFs) are an evolving class of crystalline porous materials made of organic linkers and metallic nodes. The rich chemistry of MOFs allows them to have an almost infinite number of possible structures. Consequently, they have been of great interest because of their highly tu...

Full description

Bibliographic Details
Main Author: Edgar Clyde R. Lopez
Format: Article
Language:English
Published: MDPI AG 2023-05-01
Series:Materials Proceedings
Subjects:
Online Access:https://www.mdpi.com/2673-4605/14/1/3
Description
Summary:Metal-organic frameworks (MOFs) are an evolving class of crystalline porous materials made of organic linkers and metallic nodes. The rich chemistry of MOFs allows them to have an almost infinite number of possible structures. Consequently, they have been of great interest because of their highly tunable properties and unique features, such as their high porosity, high surface area, structural stability, structural diversity, and tailorability. These enable MOFs to be a flexible catalytic platform for photocatalytic applications. Thus, this paper discusses the opportunities of MOFs for use in catalysis. In particular, the use of metal-organic frameworks as a photocatalyst is briefly discussed. Specifically, MOFs can be used as a photocatalyst for carbon dioxide reduction (CO<sub>2</sub>RR), nitrogen reduction reactions (NRRs), and water-splitting reactions (HERs and ORRs). However, using MOFs as catalytic platforms has some challenges that must be addressed to achieve commercialization. Therefore, this paper also discusses some prospects of designing MOFs for their specific catalytic applications to improve their catalytic properties and enhance selectivity. More importantly, an outlook is also provided on how MOF catalysts can further be developed to enable other catalytic reactions. Overall, MOFs have great potential as a photocatalytic material, provided they are uniquely designed to suit their intended applications.
ISSN:2673-4605