Implications of improved representations of plant respiration in a changing climate

New global datasets of upper canopy vegetation respiration have become available and their impact on global carbon cycle models is unclear. Here, the authors show the implications of these parameterisations with a global gridded land model and report significantly higher global plant respiration est...

Full description

Bibliographic Details
Main Authors: Chris Huntingford, Owen K. Atkin, Alberto Martinez-de la Torre, Lina M. Mercado, Mary A. Heskel, Anna B. Harper, Keith J. Bloomfield, Odhran S. O’Sullivan, Peter B. Reich, Kirk R. Wythers, Ethan E. Butler, Ming Chen, Kevin L. Griffin, Patrick Meir, Mark G. Tjoelker, Matthew H. Turnbull, Stephen Sitch, Andy Wiltshire, Yadvinder Malhi
Format: Article
Language:English
Published: Nature Portfolio 2017-11-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-017-01774-z
Description
Summary:New global datasets of upper canopy vegetation respiration have become available and their impact on global carbon cycle models is unclear. Here, the authors show the implications of these parameterisations with a global gridded land model and report significantly higher global plant respiration estimates.
ISSN:2041-1723