Biofilm Degradation by Seashell-Derived Calcium Hydroxide and Hydrogen Peroxide
Microbial cells and self-produced extracellular polymeric substances assembled to form biofilms that are difficult to remove from surfaces, causing problems in various fields. Seashell-derived calcium hydroxide, a sustainable inorganic material, has shown high bactericidal activity even for biofilms...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-10-01
|
Series: | Nanomaterials |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-4991/12/20/3681 |
_version_ | 1797470700052676608 |
---|---|
author | Yuuki Hata Yuta Bouda Sumiyo Hiruma Hiromi Miyazaki Shingo Nakamura |
author_facet | Yuuki Hata Yuta Bouda Sumiyo Hiruma Hiromi Miyazaki Shingo Nakamura |
author_sort | Yuuki Hata |
collection | DOAJ |
description | Microbial cells and self-produced extracellular polymeric substances assembled to form biofilms that are difficult to remove from surfaces, causing problems in various fields. Seashell-derived calcium hydroxide, a sustainable inorganic material, has shown high bactericidal activity even for biofilms due to its alkalinity. However, its biofilm removal efficacy is relatively low. Herein, we report a biofilm degradation strategy that includes two environmentally friendly reagents: seashell-derived calcium hydroxide and hydrogen peroxide. A biofilm model of <i>Escherichia coli</i> was prepared in vitro, treated with calcium hydroxide–hydrogen peroxide solutions, and semi-quantified by the crystal violet stain method. The treatment significantly improved biofilm removal efficacy compared with treatments by calcium hydroxide alone and hydrogen peroxide alone. The mechanism was elucidated from calcium hydroxide–hydrogen peroxide solutions, which suggested that perhydroxyl anion and hydroxyl radical generated from hydrogen peroxide, as well as the alkalinity of calcium hydroxide, enhanced biofilm degradation. This study showed that concurrent use of other reagents, such as hydrogen peroxide, is a promising strategy for improving the biofilm degradation activity of seashell-derived calcium hydroxide and will contribute to developing efficient biofilm removal methods. |
first_indexed | 2024-03-09T19:40:46Z |
format | Article |
id | doaj.art-c48771d09e0b447099dbbdcd0f4443af |
institution | Directory Open Access Journal |
issn | 2079-4991 |
language | English |
last_indexed | 2024-03-09T19:40:46Z |
publishDate | 2022-10-01 |
publisher | MDPI AG |
record_format | Article |
series | Nanomaterials |
spelling | doaj.art-c48771d09e0b447099dbbdcd0f4443af2023-11-24T01:41:44ZengMDPI AGNanomaterials2079-49912022-10-011220368110.3390/nano12203681Biofilm Degradation by Seashell-Derived Calcium Hydroxide and Hydrogen PeroxideYuuki Hata0Yuta Bouda1Sumiyo Hiruma2Hiromi Miyazaki3Shingo Nakamura4Division of Biomedical Engineering, National Defense Medical College Research Institute, 3-2 Namiki, Tokorozawa-shi 359-8513, JapanDivision of Biomedical Engineering, National Defense Medical College Research Institute, 3-2 Namiki, Tokorozawa-shi 359-8513, JapanDivision of Biomedical Engineering, National Defense Medical College Research Institute, 3-2 Namiki, Tokorozawa-shi 359-8513, JapanDivision of Biomedical Engineering, National Defense Medical College Research Institute, 3-2 Namiki, Tokorozawa-shi 359-8513, JapanDivision of Biomedical Engineering, National Defense Medical College Research Institute, 3-2 Namiki, Tokorozawa-shi 359-8513, JapanMicrobial cells and self-produced extracellular polymeric substances assembled to form biofilms that are difficult to remove from surfaces, causing problems in various fields. Seashell-derived calcium hydroxide, a sustainable inorganic material, has shown high bactericidal activity even for biofilms due to its alkalinity. However, its biofilm removal efficacy is relatively low. Herein, we report a biofilm degradation strategy that includes two environmentally friendly reagents: seashell-derived calcium hydroxide and hydrogen peroxide. A biofilm model of <i>Escherichia coli</i> was prepared in vitro, treated with calcium hydroxide–hydrogen peroxide solutions, and semi-quantified by the crystal violet stain method. The treatment significantly improved biofilm removal efficacy compared with treatments by calcium hydroxide alone and hydrogen peroxide alone. The mechanism was elucidated from calcium hydroxide–hydrogen peroxide solutions, which suggested that perhydroxyl anion and hydroxyl radical generated from hydrogen peroxide, as well as the alkalinity of calcium hydroxide, enhanced biofilm degradation. This study showed that concurrent use of other reagents, such as hydrogen peroxide, is a promising strategy for improving the biofilm degradation activity of seashell-derived calcium hydroxide and will contribute to developing efficient biofilm removal methods.https://www.mdpi.com/2079-4991/12/20/3681biofilmextracellular polymeric substancedegradationcalcium hydroxideseashellhydrogen peroxide |
spellingShingle | Yuuki Hata Yuta Bouda Sumiyo Hiruma Hiromi Miyazaki Shingo Nakamura Biofilm Degradation by Seashell-Derived Calcium Hydroxide and Hydrogen Peroxide Nanomaterials biofilm extracellular polymeric substance degradation calcium hydroxide seashell hydrogen peroxide |
title | Biofilm Degradation by Seashell-Derived Calcium Hydroxide and Hydrogen Peroxide |
title_full | Biofilm Degradation by Seashell-Derived Calcium Hydroxide and Hydrogen Peroxide |
title_fullStr | Biofilm Degradation by Seashell-Derived Calcium Hydroxide and Hydrogen Peroxide |
title_full_unstemmed | Biofilm Degradation by Seashell-Derived Calcium Hydroxide and Hydrogen Peroxide |
title_short | Biofilm Degradation by Seashell-Derived Calcium Hydroxide and Hydrogen Peroxide |
title_sort | biofilm degradation by seashell derived calcium hydroxide and hydrogen peroxide |
topic | biofilm extracellular polymeric substance degradation calcium hydroxide seashell hydrogen peroxide |
url | https://www.mdpi.com/2079-4991/12/20/3681 |
work_keys_str_mv | AT yuukihata biofilmdegradationbyseashellderivedcalciumhydroxideandhydrogenperoxide AT yutabouda biofilmdegradationbyseashellderivedcalciumhydroxideandhydrogenperoxide AT sumiyohiruma biofilmdegradationbyseashellderivedcalciumhydroxideandhydrogenperoxide AT hiromimiyazaki biofilmdegradationbyseashellderivedcalciumhydroxideandhydrogenperoxide AT shingonakamura biofilmdegradationbyseashellderivedcalciumhydroxideandhydrogenperoxide |