Existence and asymptotic properties of singular solutions of nonlinear elliptic equations in R n ∖ { 0 } $R^{n}\backslash\{0\}$

Abstract We consider the following singular semilinear problem { Δ u ( x ) + p ( x ) u γ = 0 , x ∈ D ( in the distributional sense ) , u > 0 , in  D , lim | x | → 0 | x | n − 2 u ( x ) = 0 , lim | x | → ∞ u ( x ) = 0 , $$ \textstyle\begin{cases} \Delta u(x)+p(x)u^{\gamma }=0,\quad x\in D ~(\text{...

Full description

Bibliographic Details
Main Authors: Imed Bachar, Entesar Aljarallah
Format: Article
Language:English
Published: SpringerOpen 2022-01-01
Series:Boundary Value Problems
Subjects:
Online Access:https://doi.org/10.1186/s13661-022-01584-3
_version_ 1798026186701406208
author Imed Bachar
Entesar Aljarallah
author_facet Imed Bachar
Entesar Aljarallah
author_sort Imed Bachar
collection DOAJ
description Abstract We consider the following singular semilinear problem { Δ u ( x ) + p ( x ) u γ = 0 , x ∈ D ( in the distributional sense ) , u > 0 , in  D , lim | x | → 0 | x | n − 2 u ( x ) = 0 , lim | x | → ∞ u ( x ) = 0 , $$ \textstyle\begin{cases} \Delta u(x)+p(x)u^{\gamma }=0,\quad x\in D ~(\text{in the distributional sense}), \\ u>0,\quad \text{in }D, \\ \lim_{ \vert x \vert \rightarrow 0} \vert x \vert ^{n-2}u(x)=0, \\ \lim_{ \vert x \vert \rightarrow \infty }u(x)=0,\end{cases} $$ where γ < 1 $\gamma <1$ , D = R n ∖ { 0 } $D=\mathbb{R}^{n}\backslash \{0\}$ ( n ≥ 3 $n\geq 3$ ) and p is a positive continuous function in D, which may be singular at x = 0 $x=0$ . Under sufficient conditions for the weighted function p ( x ) $p(x)$ , we prove the existence of a positive continuous solution on D, which could blow-up at the origin. The global asymptotic behavior of this solution is also obtained.
first_indexed 2024-04-11T18:31:20Z
format Article
id doaj.art-c48e2ca13e564368b03be2ac61710a2a
institution Directory Open Access Journal
issn 1687-2770
language English
last_indexed 2024-04-11T18:31:20Z
publishDate 2022-01-01
publisher SpringerOpen
record_format Article
series Boundary Value Problems
spelling doaj.art-c48e2ca13e564368b03be2ac61710a2a2022-12-22T04:09:26ZengSpringerOpenBoundary Value Problems1687-27702022-01-012022111910.1186/s13661-022-01584-3Existence and asymptotic properties of singular solutions of nonlinear elliptic equations in R n ∖ { 0 } $R^{n}\backslash\{0\}$Imed Bachar0Entesar Aljarallah1College of Science, Mathematics Department, King Saud UniversityCollege of Science, Mathematics Department, King Saud UniversityAbstract We consider the following singular semilinear problem { Δ u ( x ) + p ( x ) u γ = 0 , x ∈ D ( in the distributional sense ) , u > 0 , in  D , lim | x | → 0 | x | n − 2 u ( x ) = 0 , lim | x | → ∞ u ( x ) = 0 , $$ \textstyle\begin{cases} \Delta u(x)+p(x)u^{\gamma }=0,\quad x\in D ~(\text{in the distributional sense}), \\ u>0,\quad \text{in }D, \\ \lim_{ \vert x \vert \rightarrow 0} \vert x \vert ^{n-2}u(x)=0, \\ \lim_{ \vert x \vert \rightarrow \infty }u(x)=0,\end{cases} $$ where γ < 1 $\gamma <1$ , D = R n ∖ { 0 } $D=\mathbb{R}^{n}\backslash \{0\}$ ( n ≥ 3 $n\geq 3$ ) and p is a positive continuous function in D, which may be singular at x = 0 $x=0$ . Under sufficient conditions for the weighted function p ( x ) $p(x)$ , we prove the existence of a positive continuous solution on D, which could blow-up at the origin. The global asymptotic behavior of this solution is also obtained.https://doi.org/10.1186/s13661-022-01584-3Slowly varying functionsKato classAsymptotic propertiesBlow-up
spellingShingle Imed Bachar
Entesar Aljarallah
Existence and asymptotic properties of singular solutions of nonlinear elliptic equations in R n ∖ { 0 } $R^{n}\backslash\{0\}$
Boundary Value Problems
Slowly varying functions
Kato class
Asymptotic properties
Blow-up
title Existence and asymptotic properties of singular solutions of nonlinear elliptic equations in R n ∖ { 0 } $R^{n}\backslash\{0\}$
title_full Existence and asymptotic properties of singular solutions of nonlinear elliptic equations in R n ∖ { 0 } $R^{n}\backslash\{0\}$
title_fullStr Existence and asymptotic properties of singular solutions of nonlinear elliptic equations in R n ∖ { 0 } $R^{n}\backslash\{0\}$
title_full_unstemmed Existence and asymptotic properties of singular solutions of nonlinear elliptic equations in R n ∖ { 0 } $R^{n}\backslash\{0\}$
title_short Existence and asymptotic properties of singular solutions of nonlinear elliptic equations in R n ∖ { 0 } $R^{n}\backslash\{0\}$
title_sort existence and asymptotic properties of singular solutions of nonlinear elliptic equations in r n 0 r n backslash 0
topic Slowly varying functions
Kato class
Asymptotic properties
Blow-up
url https://doi.org/10.1186/s13661-022-01584-3
work_keys_str_mv AT imedbachar existenceandasymptoticpropertiesofsingularsolutionsofnonlinearellipticequationsinrn0rnbackslash0
AT entesaraljarallah existenceandasymptoticpropertiesofsingularsolutionsofnonlinearellipticequationsinrn0rnbackslash0