Multiobjective Design Optimization of Lightweight Gears

Lightweight gears have the potential to substantially contribute to the green economy demands. However, gear lightweighting is a challenging problem where various factors, such as the definition of the optimization problem and the parameterization of the design space, must be handled to achieve desi...

Full description

Bibliographic Details
Main Authors: Francesco Cosco, Rocco Adduci, Leonardo Muzzi, Ali Rezayat, Domenico Mundo
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Machines
Subjects:
Online Access:https://www.mdpi.com/2075-1702/10/9/779
Description
Summary:Lightweight gears have the potential to substantially contribute to the green economy demands. However, gear lightweighting is a challenging problem where various factors, such as the definition of the optimization problem and the parameterization of the design space, must be handled to achieve design targets and meet performance criteria. Recent advances in FE-based contact analysis have demonstrated that using hybrid FE–analytical gear contact models can offer a good compromise between computational costs and predictive accuracy. This paper exploits these enabling methodologies in a fully automated process, efficiently and reliably achieving an optimal lightweight gear design. The proposed methodology is demonstrated by prototyping a software architecture that combines commercial solutions and ad hoc procedures. The feasibility and validity of the proposed methodology are assessed, considering the multiobjective optimization of a transmission consisting of a pair of helical gears.
ISSN:2075-1702