Cantorvals as sets of subsums for a series connected with trigonometric functions

We study properties of the set of subsums for convergent series k1 sin x + ... + km sin x + ... + k1 sin x[(n-1)/m+1] + ... + km sin x[(n-1)/m+1] + ... where k1, k2, k3, ..., km are fixed positive integers and 0<x<1. It is proved that depending on the parameter x this set can be a finite union...

Full description

Bibliographic Details
Main Authors: Mykola Pratsiovytyi, Dmytro Karvatskyi
Format: Article
Language:English
Published: Odesa National University of Technology 2023-12-01
Series:Pracì Mìžnarodnogo Geometričnogo Centru
Subjects:
Online Access:https://journals.ontu.edu.ua/index.php/geometry/article/view/2519
Description
Summary:We study properties of the set of subsums for convergent series k1 sin x + ... + km sin x + ... + k1 sin x[(n-1)/m+1] + ... + km sin x[(n-1)/m+1] + ... where k1, k2, k3, ..., km are fixed positive integers and 0<x<1. It is proved that depending on the parameter x this set can be a finite union of closed intervals or Cantor-type set or even Cantorval.
ISSN:2072-9812
2409-8906