Cantorvals as sets of subsums for a series connected with trigonometric functions

We study properties of the set of subsums for convergent series k1 sin x + ... + km sin x + ... + k1 sin x[(n-1)/m+1] + ... + km sin x[(n-1)/m+1] + ... where k1, k2, k3, ..., km are fixed positive integers and 0<x<1. It is proved that depending on the parameter x this set can be a finite union...

Full description

Bibliographic Details
Main Authors: Mykola Pratsiovytyi, Dmytro Karvatskyi
Format: Article
Language:English
Published: Odesa National University of Technology 2023-12-01
Series:Pracì Mìžnarodnogo Geometričnogo Centru
Subjects:
Online Access:https://journals.ontu.edu.ua/index.php/geometry/article/view/2519
_version_ 1797390239955681280
author Mykola Pratsiovytyi
Dmytro Karvatskyi
author_facet Mykola Pratsiovytyi
Dmytro Karvatskyi
author_sort Mykola Pratsiovytyi
collection DOAJ
description We study properties of the set of subsums for convergent series k1 sin x + ... + km sin x + ... + k1 sin x[(n-1)/m+1] + ... + km sin x[(n-1)/m+1] + ... where k1, k2, k3, ..., km are fixed positive integers and 0<x<1. It is proved that depending on the parameter x this set can be a finite union of closed intervals or Cantor-type set or even Cantorval.
first_indexed 2024-03-08T23:08:54Z
format Article
id doaj.art-c496fac1777f4bd780ad027a63b10559
institution Directory Open Access Journal
issn 2072-9812
2409-8906
language English
last_indexed 2024-03-08T23:08:54Z
publishDate 2023-12-01
publisher Odesa National University of Technology
record_format Article
series Pracì Mìžnarodnogo Geometričnogo Centru
spelling doaj.art-c496fac1777f4bd780ad027a63b105592023-12-15T10:27:48ZengOdesa National University of TechnologyPracì Mìžnarodnogo Geometričnogo Centru2072-98122409-89062023-12-01163-426227110.15673/pigc.v16i3.25192519Cantorvals as sets of subsums for a series connected with trigonometric functionsMykola Pratsiovytyi0Dmytro Karvatskyi1Institute of Mathematics of NAS of UkraineInstitute of Mathematics of NAS of UkraineWe study properties of the set of subsums for convergent series k1 sin x + ... + km sin x + ... + k1 sin x[(n-1)/m+1] + ... + km sin x[(n-1)/m+1] + ... where k1, k2, k3, ..., km are fixed positive integers and 0<x<1. It is proved that depending on the parameter x this set can be a finite union of closed intervals or Cantor-type set or even Cantorval.https://journals.ontu.edu.ua/index.php/geometry/article/view/2519achievement set of sequencemultigeometric seriesthe set of subsumscantorval
spellingShingle Mykola Pratsiovytyi
Dmytro Karvatskyi
Cantorvals as sets of subsums for a series connected with trigonometric functions
Pracì Mìžnarodnogo Geometričnogo Centru
achievement set of sequence
multigeometric series
the set of subsums
cantorval
title Cantorvals as sets of subsums for a series connected with trigonometric functions
title_full Cantorvals as sets of subsums for a series connected with trigonometric functions
title_fullStr Cantorvals as sets of subsums for a series connected with trigonometric functions
title_full_unstemmed Cantorvals as sets of subsums for a series connected with trigonometric functions
title_short Cantorvals as sets of subsums for a series connected with trigonometric functions
title_sort cantorvals as sets of subsums for a series connected with trigonometric functions
topic achievement set of sequence
multigeometric series
the set of subsums
cantorval
url https://journals.ontu.edu.ua/index.php/geometry/article/view/2519
work_keys_str_mv AT mykolapratsiovytyi cantorvalsassetsofsubsumsforaseriesconnectedwithtrigonometricfunctions
AT dmytrokarvatskyi cantorvalsassetsofsubsumsforaseriesconnectedwithtrigonometricfunctions