Inter-species complementation of the translocon beta subunit requires only its transmembrane domain.

In eukaryotes, proteins enter the secretory pathway through the translocon pore of the endoplasmic reticulum. This protein translocation channel is composed of three major subunits, called Sec61alpha, beta and gamma in mammals. Unlike the other subunits, the beta subunit is dispensable for transloca...

Full description

Bibliographic Details
Main Authors: Alexandre Leroux, Luis A Rokeach
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2008-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC2586087?pdf=render
Description
Summary:In eukaryotes, proteins enter the secretory pathway through the translocon pore of the endoplasmic reticulum. This protein translocation channel is composed of three major subunits, called Sec61alpha, beta and gamma in mammals. Unlike the other subunits, the beta subunit is dispensable for translocation and cell viability in all organisms studied. Intriguingly, the knockout of the Sec61beta encoding genes results in different phenotypes in different species. Nevertheless, the beta subunit shows a high level of sequence homology across species, suggesting the conservation of a biological function that remains ill-defined. To address its cellular roles, we characterized the homolog of Sec61beta in the fission yeast Schizosaccharomyces pombe (Sbh1p). Here, we show that the knockout of sbh1(+) results in severe cold sensitivity, increased sensitivity to cell-wall stress, and reduced protein secretion at 23 degrees C. Sec61beta homologs from Saccharomyces cerevisiae and human complement the knockout of sbh1(+) in S. pombe. As in S. cerevisiae, the transmembrane domain (TMD) of S. pombe Sec61beta is sufficient to complement the phenotypes resulting from the knockout of the entire encoding gene. Remarkably, the TMD of Sec61beta from S. cerevisiae and human also complement the gene knockouts in both yeasts. Together, these observations indicate that the TMD of Sec61beta exerts a cellular function that is conserved across species.
ISSN:1932-6203