Smoothness Harmonic: A Graph-Based Approach to Reveal Spatiotemporal Patterns of Cortical Dynamics in fMRI Data
Despite fMRI data being interpreted as time-varying graphs in graph analysis, there has been more emphasis on learning sophisticated node embeddings and complex graph structures rather than providing a macroscopic description of cortical dynamics. In this paper, I introduce the notion of smoothness...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-06-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/13/12/7130 |
Summary: | Despite fMRI data being interpreted as time-varying graphs in graph analysis, there has been more emphasis on learning sophisticated node embeddings and complex graph structures rather than providing a macroscopic description of cortical dynamics. In this paper, I introduce the notion of smoothness harmonics to capture the slowly varying cortical dynamics in graph-based fMRI data in the form of spatiotemporal smoothness patterns. These smoothness harmonics are rooted in the eigendecomposition of graph Laplacians, which reveal how low-frequency-dominated fMRI signals propagate across the cortex and through time. We showcase their usage in a real fMRI dataset to differentiate the cortical dynamics of children and adults while also demonstrating their empirical merit over the static functional connectomes in inter-subject and between-group classification analyses. |
---|---|
ISSN: | 2076-3417 |