Nonoscillatory solutions of the four-dimensional difference system

We study asymptotic properties of nonoscillatory solutions for a four-dimensional system \[\begin{aligned} \Delta x_{n}&= C_{n}\, y_{n}^{\frac{1}{\gamma}} \\ \Delta y_{n}&= B_{n}\, z_{n}^{\frac{1}{\beta}} \\ \Delta z_{n}&= A_{n}\, w_{n}^{\frac{1}{\alpha}} \\ \Delta w_{n}&= D_{n}\, x_...

Full description

Bibliographic Details
Main Authors: Zuzana Dosla, J. Krejčová
Format: Article
Language:English
Published: University of Szeged 2012-05-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=1108
_version_ 1797830673861443584
author Zuzana Dosla
J. Krejčová
author_facet Zuzana Dosla
J. Krejčová
author_sort Zuzana Dosla
collection DOAJ
description We study asymptotic properties of nonoscillatory solutions for a four-dimensional system \[\begin{aligned} \Delta x_{n}&= C_{n}\, y_{n}^{\frac{1}{\gamma}} \\ \Delta y_{n}&= B_{n}\, z_{n}^{\frac{1}{\beta}} \\ \Delta z_{n}&= A_{n}\, w_{n}^{\frac{1}{\alpha}} \\ \Delta w_{n}&= D_{n}\, x_{n+\tau}^{\delta}. \end{aligned}\] In particular, we give sufficient conditions that any bounded nonoscillatory solution tends to zero and any unbounded nonoscillatory solution tends to infinity in all its components.
first_indexed 2024-04-09T13:40:54Z
format Article
id doaj.art-c49f64b0ab3344b9b184c0fd33d638ef
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:40:54Z
publishDate 2012-05-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-c49f64b0ab3344b9b184c0fd33d638ef2023-05-09T07:53:02ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752012-05-012012411110.14232/ejqtde.2012.3.41108Nonoscillatory solutions of the four-dimensional difference systemZuzana Dosla0J. Krejčová1Masaryk University, Brno, Czech RepublicMasaryk University, Brno, Czech RepublicWe study asymptotic properties of nonoscillatory solutions for a four-dimensional system \[\begin{aligned} \Delta x_{n}&= C_{n}\, y_{n}^{\frac{1}{\gamma}} \\ \Delta y_{n}&= B_{n}\, z_{n}^{\frac{1}{\beta}} \\ \Delta z_{n}&= A_{n}\, w_{n}^{\frac{1}{\alpha}} \\ \Delta w_{n}&= D_{n}\, x_{n+\tau}^{\delta}. \end{aligned}\] In particular, we give sufficient conditions that any bounded nonoscillatory solution tends to zero and any unbounded nonoscillatory solution tends to infinity in all its components.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=1108asymptotic propertiesdifference equationkneser solutionstrongly monotone solution
spellingShingle Zuzana Dosla
J. Krejčová
Nonoscillatory solutions of the four-dimensional difference system
Electronic Journal of Qualitative Theory of Differential Equations
asymptotic properties
difference equation
kneser solution
strongly monotone solution
title Nonoscillatory solutions of the four-dimensional difference system
title_full Nonoscillatory solutions of the four-dimensional difference system
title_fullStr Nonoscillatory solutions of the four-dimensional difference system
title_full_unstemmed Nonoscillatory solutions of the four-dimensional difference system
title_short Nonoscillatory solutions of the four-dimensional difference system
title_sort nonoscillatory solutions of the four dimensional difference system
topic asymptotic properties
difference equation
kneser solution
strongly monotone solution
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=1108
work_keys_str_mv AT zuzanadosla nonoscillatorysolutionsofthefourdimensionaldifferencesystem
AT jkrejcova nonoscillatorysolutionsofthefourdimensionaldifferencesystem