Different Preparation Method of Nanocellulose from <i>Macaranga gigantea</i> and Its Preliminary Study on Packaging Film Potential
Nanocellulose is a versatile cellulosic nanomaterial that can be used in many application areas. Applying different preparation strategies leads to different types of nanocellulose. In this study, nanocrystalline cellulose (NCC) and nanofibrillated cellulose (NFC) were prepared from lesser known woo...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-10-01
|
Series: | Polymers |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4360/14/21/4591 |
_version_ | 1797466698184392704 |
---|---|
author | Latifah Jasmani Nurul Ain Nadirah Jamaluddin Rafeadah Rusli Sharmiza Adnan Sarani Zakaria |
author_facet | Latifah Jasmani Nurul Ain Nadirah Jamaluddin Rafeadah Rusli Sharmiza Adnan Sarani Zakaria |
author_sort | Latifah Jasmani |
collection | DOAJ |
description | Nanocellulose is a versatile cellulosic nanomaterial that can be used in many application areas. Applying different preparation strategies leads to different types of nanocellulose. In this study, nanocrystalline cellulose (NCC) and nanofibrillated cellulose (NFC) were prepared from lesser known wood species, viz., <i>Macaranga gigantea</i>, using sulfuric acid hydrolysis and enzymatic pretreatment with ultrafine grinding approaches, respectively. The respective nanocellulose was characterized by means of Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analysis, thermogravimetric analysis (TGA), atomic force microscopy (AFM). It was then converted into a thin film to assess its performance which includes tensile test, transparency, air permeance, water vapor transmission rate (WVTR), and water vapor permeability (WVP) properties. NCC and NFC produced from the raw material of Macaranga had average widths of 6.38 ± 3.92 nm and 13.17 ± 12.71 nm, respectively. Peaks in FTIR spectra showed the conversion of Macaranga wood to nanocellulose by the presence of cellulose fingerprint as well as absence of lignin and hemicellulose after alkaline treatment. The successful conversion was also supported by XRD analysis which displayed the increased crystallinity value from 54% to 70%. TGA decomposition pattern at 200–490 °C revealed the thermal stability of the samples. The thin film produced from nanocelluloses had WVTR values of 4.58 and 12.14 g/(day·m<sup>2</sup>) for NFC and NCC, respectively, comparable to those of films from polyester and oriented polypropylene. Nanocellulose-based thin film has the potential to be used as sustainable and biodegradable packaging. |
first_indexed | 2024-03-09T18:43:27Z |
format | Article |
id | doaj.art-c4a632f856a34ef8bcfcf0d128f7ca2e |
institution | Directory Open Access Journal |
issn | 2073-4360 |
language | English |
last_indexed | 2024-03-09T18:43:27Z |
publishDate | 2022-10-01 |
publisher | MDPI AG |
record_format | Article |
series | Polymers |
spelling | doaj.art-c4a632f856a34ef8bcfcf0d128f7ca2e2023-11-24T06:28:44ZengMDPI AGPolymers2073-43602022-10-011421459110.3390/polym14214591Different Preparation Method of Nanocellulose from <i>Macaranga gigantea</i> and Its Preliminary Study on Packaging Film PotentialLatifah Jasmani0Nurul Ain Nadirah Jamaluddin1Rafeadah Rusli2Sharmiza Adnan3Sarani Zakaria4Forest Products Division, Forest Research Institute Malaysia (FRIM), Kepong 52109, Selangor, MalaysiaFaculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, MalaysiaForest Products Division, Forest Research Institute Malaysia (FRIM), Kepong 52109, Selangor, MalaysiaForest Products Division, Forest Research Institute Malaysia (FRIM), Kepong 52109, Selangor, MalaysiaFaculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, MalaysiaNanocellulose is a versatile cellulosic nanomaterial that can be used in many application areas. Applying different preparation strategies leads to different types of nanocellulose. In this study, nanocrystalline cellulose (NCC) and nanofibrillated cellulose (NFC) were prepared from lesser known wood species, viz., <i>Macaranga gigantea</i>, using sulfuric acid hydrolysis and enzymatic pretreatment with ultrafine grinding approaches, respectively. The respective nanocellulose was characterized by means of Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analysis, thermogravimetric analysis (TGA), atomic force microscopy (AFM). It was then converted into a thin film to assess its performance which includes tensile test, transparency, air permeance, water vapor transmission rate (WVTR), and water vapor permeability (WVP) properties. NCC and NFC produced from the raw material of Macaranga had average widths of 6.38 ± 3.92 nm and 13.17 ± 12.71 nm, respectively. Peaks in FTIR spectra showed the conversion of Macaranga wood to nanocellulose by the presence of cellulose fingerprint as well as absence of lignin and hemicellulose after alkaline treatment. The successful conversion was also supported by XRD analysis which displayed the increased crystallinity value from 54% to 70%. TGA decomposition pattern at 200–490 °C revealed the thermal stability of the samples. The thin film produced from nanocelluloses had WVTR values of 4.58 and 12.14 g/(day·m<sup>2</sup>) for NFC and NCC, respectively, comparable to those of films from polyester and oriented polypropylene. Nanocellulose-based thin film has the potential to be used as sustainable and biodegradable packaging.https://www.mdpi.com/2073-4360/14/21/4591celluloseMacarangapackagingcrystallinefibril |
spellingShingle | Latifah Jasmani Nurul Ain Nadirah Jamaluddin Rafeadah Rusli Sharmiza Adnan Sarani Zakaria Different Preparation Method of Nanocellulose from <i>Macaranga gigantea</i> and Its Preliminary Study on Packaging Film Potential Polymers cellulose Macaranga packaging crystalline fibril |
title | Different Preparation Method of Nanocellulose from <i>Macaranga gigantea</i> and Its Preliminary Study on Packaging Film Potential |
title_full | Different Preparation Method of Nanocellulose from <i>Macaranga gigantea</i> and Its Preliminary Study on Packaging Film Potential |
title_fullStr | Different Preparation Method of Nanocellulose from <i>Macaranga gigantea</i> and Its Preliminary Study on Packaging Film Potential |
title_full_unstemmed | Different Preparation Method of Nanocellulose from <i>Macaranga gigantea</i> and Its Preliminary Study on Packaging Film Potential |
title_short | Different Preparation Method of Nanocellulose from <i>Macaranga gigantea</i> and Its Preliminary Study on Packaging Film Potential |
title_sort | different preparation method of nanocellulose from i macaranga gigantea i and its preliminary study on packaging film potential |
topic | cellulose Macaranga packaging crystalline fibril |
url | https://www.mdpi.com/2073-4360/14/21/4591 |
work_keys_str_mv | AT latifahjasmani differentpreparationmethodofnanocellulosefromimacarangagiganteaianditspreliminarystudyonpackagingfilmpotential AT nurulainnadirahjamaluddin differentpreparationmethodofnanocellulosefromimacarangagiganteaianditspreliminarystudyonpackagingfilmpotential AT rafeadahrusli differentpreparationmethodofnanocellulosefromimacarangagiganteaianditspreliminarystudyonpackagingfilmpotential AT sharmizaadnan differentpreparationmethodofnanocellulosefromimacarangagiganteaianditspreliminarystudyonpackagingfilmpotential AT saranizakaria differentpreparationmethodofnanocellulosefromimacarangagiganteaianditspreliminarystudyonpackagingfilmpotential |