MXene‐Modified Aramid Aerogel for Advanced Solar Steam Generation

Developing solar‐driven desalination through interfacial steam generation is crucial to reducing global water shortages. However, traditional solar steam generation systems have faced efficiency, durability, cost, and complexity limitations. To overcome these issues, interfacial solar steam evaporat...

Full description

Bibliographic Details
Main Authors: Mandeep Singh, Si Qin, Ken Aldren Usman, Lifeng Wang, Degang Jiang, Guoliang Yang, Dan Liu, Yuxi Ma, Weiwei Lei
Format: Article
Language:English
Published: Wiley-VCH 2024-01-01
Series:Advanced Energy & Sustainability Research
Subjects:
Online Access:https://doi.org/10.1002/aesr.202300126
Description
Summary:Developing solar‐driven desalination through interfacial steam generation is crucial to reducing global water shortages. However, traditional solar steam generation systems have faced efficiency, durability, cost, and complexity limitations. To overcome these issues, interfacial solar steam evaporators are fabricated using light‐absorbing materials with low thermal conductivity, high absorption capacity, and sufficient mechanical strength. Herein, an advanced 3D solar evaporator is developed by coating MXene onto the surface of the aramid nanofiber aerogels (MX@ANF aerogels). The MXene coating enhances the ANF aerogels' light absorption and thermal conversion capabilities. Additionally, the hydrophilicity of MXene complements the high porosity of the host aerogels, enhancing continuous water supply by improving the capillary action. Primarily, these MX@ANF aerogels show promising performance at the air–water interface, with an evaporation rate of 1.48 kg m−2 h−1 and steam conversion efficiency of 93.8% under 1 sun irradiation (1 kW m−2). These highlight the effectiveness of the MX@ANF aerogel as a material for solar‐driven desalination. Moreover, using MXene as a photothermal agent in composite materials paves new avenues toward efficient and cost‐effective solutions for addressing water scarcity through solar desalination.
ISSN:2699-9412