Shortwave UV Blue Luminescence of Some Minerals and Gems Due to Titanate Groups

This article reviews blue shortwave-excited luminescence (BSL) in natural minerals and synthetic materials. It also describes in detail the emission of seven minerals and gems displaying BSL, as well as three references in which BSL is caused by titanate groups (TiO<sub>6</sub>): benitoi...

Full description

Bibliographic Details
Main Authors: Maxence Vigier, Emmanuel Fritsch, Théo Cavignac, Camille Latouche, Stéphane Jobic
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Minerals
Subjects:
Online Access:https://www.mdpi.com/2075-163X/13/1/104
Description
Summary:This article reviews blue shortwave-excited luminescence (BSL) in natural minerals and synthetic materials. It also describes in detail the emission of seven minerals and gems displaying BSL, as well as three references in which BSL is caused by titanate groups (TiO<sub>6</sub>): benitoite, Ti-doped synthetic sapphire and spinel. Emission (under 254 nm shortwave excitation) and excitation spectra are provided, and fluorescence decay times are measured. It is proposed that BSL in beryl (morganite), dumortierite, hydrozincite, pezzotaite, tourmaline (elbaite), some silicates glasses, and synthetic opals is due to titanate groups present at a concentration of 20 ppmw Ti or above. They all share a broad emission with a maximum between 420 and 480 nm (2.95 to 2.58 eV) (thus perceived as blue), and an excitation spectrum peaking in the short-wave range, between 230 and 290 nm (5.39 to 4.27 eV). Furthermore, their luminescence decay time is about 20 microseconds (from 2 to 40). These three parameters are consistent with a titanate emission, and to our knowledge, no other activator.
ISSN:2075-163X