A New Dual-Direction SCR With High Holding Voltage and Low Dynamic Resistance for 5 V Application

Dual-directional silicon-controlled rectifiers (DDSCRs), which provide both positive and negative electrostatic discharge (ESD) surge paths, are ESD protection devices with an excellent area efficiency. However, DDSCRs have a low holding voltage for use in 5 V-class applications, with a relatively h...

Full description

Bibliographic Details
Main Authors: Kyoung-Il Do, Byung-Seok Lee, Yong-Seo Koo
Format: Article
Language:English
Published: IEEE 2019-01-01
Series:IEEE Journal of the Electron Devices Society
Subjects:
Online Access:https://ieeexplore.ieee.org/document/8713486/
Description
Summary:Dual-directional silicon-controlled rectifiers (DDSCRs), which provide both positive and negative electrostatic discharge (ESD) surge paths, are ESD protection devices with an excellent area efficiency. However, DDSCRs have a low holding voltage for use in 5 V-class applications, with a relatively high on-state resistance because of the elongated ESD surge path compared to unidirectional SCRs. In this paper, we propose a novel DDSCR with a higher holding voltage and a better ESD tolerance than conventional low-triggering DDSCRs (LTDDSCRs), realized by operating two additional parasitic bipolar transistors. The proposed ESD protection device was developed through a 0.18-μm CMOS process, and a timeline pulse system was used to verify its properties. The measurement results show that the proposed ESD protection device exhibits an improved tolerance and a high holding voltage and is expected to be reliable in 5 V-class applications.
ISSN:2168-6734