Homoclinic and heteroclinic solutions to a hepatitis C evolution model

Homoclinic and heteroclinic solutions to a standard hepatitis C virus (HCV) evolution model described by T. C. Reluga, H. Dahari and A. S. Perelson, (SIAM J. Appl. Math., 69 (2009), pp. 999–1023) are considered in this paper. Inverse balancing and generalized differential techniques enable derivatio...

Full description

Bibliographic Details
Main Authors: Telksnys Tadas, Navickas Zenonas, Marcinkevicius Romas, Cao Maosen, Ragulskis Minvydas
Format: Article
Language:English
Published: De Gruyter 2018-12-01
Series:Open Mathematics
Subjects:
Online Access:https://doi.org/10.1515/math-2018-0130
_version_ 1818738548123107328
author Telksnys Tadas
Navickas Zenonas
Marcinkevicius Romas
Cao Maosen
Ragulskis Minvydas
author_facet Telksnys Tadas
Navickas Zenonas
Marcinkevicius Romas
Cao Maosen
Ragulskis Minvydas
author_sort Telksnys Tadas
collection DOAJ
description Homoclinic and heteroclinic solutions to a standard hepatitis C virus (HCV) evolution model described by T. C. Reluga, H. Dahari and A. S. Perelson, (SIAM J. Appl. Math., 69 (2009), pp. 999–1023) are considered in this paper. Inverse balancing and generalized differential techniques enable derivation of necessary and sufficient existence conditions for homoclinic/heteroclinic solutions in the considered system. It is shown that homoclinic/heteroclinic solutions do appear when the considered system describes biologically significant evolution. Furthermore, it is demonstrated that the hepatitis C virus evolution model is structurally stable in the topological sense and does maintain homoclinic/heteroclinic solutions as diffusive coupling coefficients tend to zero. Computational experiments are used to illustrate the dynamics of such solutions in the hepatitis C evolution model.
first_indexed 2024-12-18T01:10:41Z
format Article
id doaj.art-c4d03884e6b74e2b9a53406e71b7e8c9
institution Directory Open Access Journal
issn 2391-5455
language English
last_indexed 2024-12-18T01:10:41Z
publishDate 2018-12-01
publisher De Gruyter
record_format Article
series Open Mathematics
spelling doaj.art-c4d03884e6b74e2b9a53406e71b7e8c92022-12-21T21:26:06ZengDe GruyterOpen Mathematics2391-54552018-12-011611537155510.1515/math-2018-0130math-2018-0130Homoclinic and heteroclinic solutions to a hepatitis C evolution modelTelksnys Tadas0Navickas Zenonas1Marcinkevicius Romas2Cao Maosen3Ragulskis Minvydas4Research Group for Mathematical and Numerical Analysis of Dynamical Systems, Kaunas University of Technology, Studentu 50-147, KaunasLT-51368, LithuaniaResearch Group for Mathematical and Numerical Analysis of Dynamical Systems, Kaunas University of Technology, Studentu 50-147, KaunasLT-51368, LithuaniaDepartment of Software Engineering, Kaunas University of Technology, Studentu 50-415, KaunasLT-51368, LithuaniaDepartment of Engineering Mechanics, Hohai University, Nanjing210098, ChinaResearch Group for Mathematical and Numerical Analysis of Dynamical Systems, Kaunas University of Technology, Studentu 50-147, KaunasLT-51368, LithuaniaHomoclinic and heteroclinic solutions to a standard hepatitis C virus (HCV) evolution model described by T. C. Reluga, H. Dahari and A. S. Perelson, (SIAM J. Appl. Math., 69 (2009), pp. 999–1023) are considered in this paper. Inverse balancing and generalized differential techniques enable derivation of necessary and sufficient existence conditions for homoclinic/heteroclinic solutions in the considered system. It is shown that homoclinic/heteroclinic solutions do appear when the considered system describes biologically significant evolution. Furthermore, it is demonstrated that the hepatitis C virus evolution model is structurally stable in the topological sense and does maintain homoclinic/heteroclinic solutions as diffusive coupling coefficients tend to zero. Computational experiments are used to illustrate the dynamics of such solutions in the hepatitis C evolution model.https://doi.org/10.1515/math-2018-0130hepatitis c modelhomoclinic/heteroclinic solutiongeneralized differential operatorinverse balancing34a3435c0792b05
spellingShingle Telksnys Tadas
Navickas Zenonas
Marcinkevicius Romas
Cao Maosen
Ragulskis Minvydas
Homoclinic and heteroclinic solutions to a hepatitis C evolution model
Open Mathematics
hepatitis c model
homoclinic/heteroclinic solution
generalized differential operator
inverse balancing
34a34
35c07
92b05
title Homoclinic and heteroclinic solutions to a hepatitis C evolution model
title_full Homoclinic and heteroclinic solutions to a hepatitis C evolution model
title_fullStr Homoclinic and heteroclinic solutions to a hepatitis C evolution model
title_full_unstemmed Homoclinic and heteroclinic solutions to a hepatitis C evolution model
title_short Homoclinic and heteroclinic solutions to a hepatitis C evolution model
title_sort homoclinic and heteroclinic solutions to a hepatitis c evolution model
topic hepatitis c model
homoclinic/heteroclinic solution
generalized differential operator
inverse balancing
34a34
35c07
92b05
url https://doi.org/10.1515/math-2018-0130
work_keys_str_mv AT telksnystadas homoclinicandheteroclinicsolutionstoahepatitiscevolutionmodel
AT navickaszenonas homoclinicandheteroclinicsolutionstoahepatitiscevolutionmodel
AT marcinkeviciusromas homoclinicandheteroclinicsolutionstoahepatitiscevolutionmodel
AT caomaosen homoclinicandheteroclinicsolutionstoahepatitiscevolutionmodel
AT ragulskisminvydas homoclinicandheteroclinicsolutionstoahepatitiscevolutionmodel