<i>L<sup>p</sup></i> Bounds for Rough Maximal Operators along Surfaces of Revolution on Product Domains

In this paper, we study the boundedness of rough Maximal integral operators along surfaces of revolution on product domains. For several classes of surfaces, we establish appropriate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><...

Full description

Bibliographic Details
Main Authors: Mohammed Ali, Hussain Al-Qassem
Format: Article
Language:English
Published: MDPI AG 2024-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/12/2/193
Description
Summary:In this paper, we study the boundedness of rough Maximal integral operators along surfaces of revolution on product domains. For several classes of surfaces, we establish appropriate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mi>p</mi></msup></semantics></math></inline-formula> bounds of these Maximal operators under the assumption <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Ω</mo><mo>∈</mo><msup><mi>L</mi><mi>q</mi></msup><mrow><mo>(</mo><msup><mi mathvariant="double-struck">S</mi><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>×</mo><msup><mi mathvariant="double-struck">S</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula> for some <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>></mo><mn>1</mn></mrow></semantics></math></inline-formula>, and then we employ these bounds along with Yano’s extrapolation argument to obtain the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mi>p</mi></msup></semantics></math></inline-formula> boundedness of the aforementioned integral operators under a weaker condition in which <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Ω</mo></semantics></math></inline-formula> belongs to either the space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>B</mi><mi>q</mi><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mfrac><mn>2</mn><msup><mi>τ</mi><mo>′</mo></msup></mfrac><mo>−</mo><mn>1</mn><mo>)</mo></mrow></msubsup><mrow><mo>(</mo><msup><mi mathvariant="double-struck">S</mi><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>×</mo><msup><mi mathvariant="double-struck">S</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula> or to the space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><msup><mrow><mo>(</mo><mi>l</mi><mi>o</mi><mi>g</mi><mi>L</mi><mo>)</mo></mrow><mrow><mn>2</mn><mo>/</mo><msup><mi>τ</mi><mo>′</mo></msup></mrow></msup><mrow><mo>(</mo><msup><mi mathvariant="double-struck">S</mi><mrow><mi>m</mi><mo>−</mo></mrow></msup><mo>×</mo><msup><mi mathvariant="double-struck">S</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. Our results extend and improve many previously known results.
ISSN:2227-7390