<i>L<sup>p</sup></i> Bounds for Rough Maximal Operators along Surfaces of Revolution on Product Domains

In this paper, we study the boundedness of rough Maximal integral operators along surfaces of revolution on product domains. For several classes of surfaces, we establish appropriate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><...

Full description

Bibliographic Details
Main Authors: Mohammed Ali, Hussain Al-Qassem
Format: Article
Language:English
Published: MDPI AG 2024-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/12/2/193
_version_ 1797343088380739584
author Mohammed Ali
Hussain Al-Qassem
author_facet Mohammed Ali
Hussain Al-Qassem
author_sort Mohammed Ali
collection DOAJ
description In this paper, we study the boundedness of rough Maximal integral operators along surfaces of revolution on product domains. For several classes of surfaces, we establish appropriate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mi>p</mi></msup></semantics></math></inline-formula> bounds of these Maximal operators under the assumption <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Ω</mo><mo>∈</mo><msup><mi>L</mi><mi>q</mi></msup><mrow><mo>(</mo><msup><mi mathvariant="double-struck">S</mi><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>×</mo><msup><mi mathvariant="double-struck">S</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula> for some <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>></mo><mn>1</mn></mrow></semantics></math></inline-formula>, and then we employ these bounds along with Yano’s extrapolation argument to obtain the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mi>p</mi></msup></semantics></math></inline-formula> boundedness of the aforementioned integral operators under a weaker condition in which <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Ω</mo></semantics></math></inline-formula> belongs to either the space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>B</mi><mi>q</mi><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mfrac><mn>2</mn><msup><mi>τ</mi><mo>′</mo></msup></mfrac><mo>−</mo><mn>1</mn><mo>)</mo></mrow></msubsup><mrow><mo>(</mo><msup><mi mathvariant="double-struck">S</mi><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>×</mo><msup><mi mathvariant="double-struck">S</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula> or to the space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><msup><mrow><mo>(</mo><mi>l</mi><mi>o</mi><mi>g</mi><mi>L</mi><mo>)</mo></mrow><mrow><mn>2</mn><mo>/</mo><msup><mi>τ</mi><mo>′</mo></msup></mrow></msup><mrow><mo>(</mo><msup><mi mathvariant="double-struck">S</mi><mrow><mi>m</mi><mo>−</mo></mrow></msup><mo>×</mo><msup><mi mathvariant="double-struck">S</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. Our results extend and improve many previously known results.
first_indexed 2024-03-08T10:42:37Z
format Article
id doaj.art-c4d996f72a1e4b47880db4639ffd25f1
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-08T10:42:37Z
publishDate 2024-01-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-c4d996f72a1e4b47880db4639ffd25f12024-01-26T17:31:03ZengMDPI AGMathematics2227-73902024-01-0112219310.3390/math12020193<i>L<sup>p</sup></i> Bounds for Rough Maximal Operators along Surfaces of Revolution on Product DomainsMohammed Ali0Hussain Al-Qassem1Department of Mathematics and Statistics, Faculty of Science and Arts, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, JordanMathematics Program, Department of Mathematics, Statistics and Physics, College of Arts and Sciences, Qatar University, Doha 2713, QatarIn this paper, we study the boundedness of rough Maximal integral operators along surfaces of revolution on product domains. For several classes of surfaces, we establish appropriate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mi>p</mi></msup></semantics></math></inline-formula> bounds of these Maximal operators under the assumption <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Ω</mo><mo>∈</mo><msup><mi>L</mi><mi>q</mi></msup><mrow><mo>(</mo><msup><mi mathvariant="double-struck">S</mi><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>×</mo><msup><mi mathvariant="double-struck">S</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula> for some <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>></mo><mn>1</mn></mrow></semantics></math></inline-formula>, and then we employ these bounds along with Yano’s extrapolation argument to obtain the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mi>p</mi></msup></semantics></math></inline-formula> boundedness of the aforementioned integral operators under a weaker condition in which <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Ω</mo></semantics></math></inline-formula> belongs to either the space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>B</mi><mi>q</mi><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mfrac><mn>2</mn><msup><mi>τ</mi><mo>′</mo></msup></mfrac><mo>−</mo><mn>1</mn><mo>)</mo></mrow></msubsup><mrow><mo>(</mo><msup><mi mathvariant="double-struck">S</mi><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>×</mo><msup><mi mathvariant="double-struck">S</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula> or to the space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><msup><mrow><mo>(</mo><mi>l</mi><mi>o</mi><mi>g</mi><mi>L</mi><mo>)</mo></mrow><mrow><mn>2</mn><mo>/</mo><msup><mi>τ</mi><mo>′</mo></msup></mrow></msup><mrow><mo>(</mo><msup><mi mathvariant="double-struck">S</mi><mrow><mi>m</mi><mo>−</mo></mrow></msup><mo>×</mo><msup><mi mathvariant="double-struck">S</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. Our results extend and improve many previously known results.https://www.mdpi.com/2227-7390/12/2/193product spacessurfaces of revolutionrough kernelsMaximal integrals
spellingShingle Mohammed Ali
Hussain Al-Qassem
<i>L<sup>p</sup></i> Bounds for Rough Maximal Operators along Surfaces of Revolution on Product Domains
Mathematics
product spaces
surfaces of revolution
rough kernels
Maximal integrals
title <i>L<sup>p</sup></i> Bounds for Rough Maximal Operators along Surfaces of Revolution on Product Domains
title_full <i>L<sup>p</sup></i> Bounds for Rough Maximal Operators along Surfaces of Revolution on Product Domains
title_fullStr <i>L<sup>p</sup></i> Bounds for Rough Maximal Operators along Surfaces of Revolution on Product Domains
title_full_unstemmed <i>L<sup>p</sup></i> Bounds for Rough Maximal Operators along Surfaces of Revolution on Product Domains
title_short <i>L<sup>p</sup></i> Bounds for Rough Maximal Operators along Surfaces of Revolution on Product Domains
title_sort i l sup p sup i bounds for rough maximal operators along surfaces of revolution on product domains
topic product spaces
surfaces of revolution
rough kernels
Maximal integrals
url https://www.mdpi.com/2227-7390/12/2/193
work_keys_str_mv AT mohammedali ilsuppsupiboundsforroughmaximaloperatorsalongsurfacesofrevolutiononproductdomains
AT hussainalqassem ilsuppsupiboundsforroughmaximaloperatorsalongsurfacesofrevolutiononproductdomains