Entanglement Entropy in a Triangular Billiard

The Schrödinger equation for a quantum particle in a two-dimensional triangular billiard can be written as the Helmholtz equation with a Dirichlet boundary condition. We numerically explore the quantum entanglement of the eigenfunctions of the triangle billiard and its relation to the irrationality...

Full description

Bibliographic Details
Main Authors: Sijo K. Joseph, Miguel A. F. Sanjuán
Format: Article
Language:English
Published: MDPI AG 2016-03-01
Series:Entropy
Subjects:
Online Access:http://www.mdpi.com/1099-4300/18/3/79
_version_ 1798034671326461952
author Sijo K. Joseph
Miguel A. F. Sanjuán
author_facet Sijo K. Joseph
Miguel A. F. Sanjuán
author_sort Sijo K. Joseph
collection DOAJ
description The Schrödinger equation for a quantum particle in a two-dimensional triangular billiard can be written as the Helmholtz equation with a Dirichlet boundary condition. We numerically explore the quantum entanglement of the eigenfunctions of the triangle billiard and its relation to the irrationality of the triangular geometry. We also study the entanglement dynamics of the coherent state with its center chosen at the centroid of the different triangle configuration. Using the von Neumann entropy of entanglement, we quantify the quantum entanglement appearing in the eigenfunction of the triangular domain. We see a clear correspondence between the irrationality of the triangle and the average entanglement of the eigenfunctions. The entanglement dynamics of the coherent state shows a dependence on the geometry of the triangle. The effect of quantum squeezing on the coherent state is analyzed and it can be utilize to enhance or decrease the entanglement entropy in a triangular billiard.
first_indexed 2024-04-11T20:47:31Z
format Article
id doaj.art-c4ebe1e1df304e838c68317ae6112406
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-04-11T20:47:31Z
publishDate 2016-03-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-c4ebe1e1df304e838c68317ae61124062022-12-22T04:03:59ZengMDPI AGEntropy1099-43002016-03-011837910.3390/e18030079e18030079Entanglement Entropy in a Triangular BilliardSijo K. Joseph0Miguel A. F. Sanjuán1Nonlinear Dynamics, Chaos and Complex Systems Group, Departamento de Física, Universidad Rey Juan Carlos, Tulipán s/n, Móstoles, Madrid 28933, SpainNonlinear Dynamics, Chaos and Complex Systems Group, Departamento de Física, Universidad Rey Juan Carlos, Tulipán s/n, Móstoles, Madrid 28933, SpainThe Schrödinger equation for a quantum particle in a two-dimensional triangular billiard can be written as the Helmholtz equation with a Dirichlet boundary condition. We numerically explore the quantum entanglement of the eigenfunctions of the triangle billiard and its relation to the irrationality of the triangular geometry. We also study the entanglement dynamics of the coherent state with its center chosen at the centroid of the different triangle configuration. Using the von Neumann entropy of entanglement, we quantify the quantum entanglement appearing in the eigenfunction of the triangular domain. We see a clear correspondence between the irrationality of the triangle and the average entanglement of the eigenfunctions. The entanglement dynamics of the coherent state shows a dependence on the geometry of the triangle. The effect of quantum squeezing on the coherent state is analyzed and it can be utilize to enhance or decrease the entanglement entropy in a triangular billiard.http://www.mdpi.com/1099-4300/18/3/79continuous-variable quantum entanglementtriangular billiard
spellingShingle Sijo K. Joseph
Miguel A. F. Sanjuán
Entanglement Entropy in a Triangular Billiard
Entropy
continuous-variable quantum entanglement
triangular billiard
title Entanglement Entropy in a Triangular Billiard
title_full Entanglement Entropy in a Triangular Billiard
title_fullStr Entanglement Entropy in a Triangular Billiard
title_full_unstemmed Entanglement Entropy in a Triangular Billiard
title_short Entanglement Entropy in a Triangular Billiard
title_sort entanglement entropy in a triangular billiard
topic continuous-variable quantum entanglement
triangular billiard
url http://www.mdpi.com/1099-4300/18/3/79
work_keys_str_mv AT sijokjoseph entanglemententropyinatriangularbilliard
AT miguelafsanjuan entanglemententropyinatriangularbilliard