A First Methodological Development and Validation of ReTap: An Open-Source UPDRS Finger Tapping Assessment Tool Based on Accelerometer-Data

Bradykinesia is a cardinal hallmark of Parkinson’s disease (PD). Improvement in bradykinesia is an important signature of effective treatment. Finger tapping is commonly used to index bradykinesia, albeit these approaches largely rely on subjective clinical evaluations. Moreover, recently developed...

Full description

Bibliographic Details
Main Authors: Jeroen G. V. Habets, Rachel K. Spooner, Varvara Mathiopoulou, Lucia K. Feldmann, Johannes L. Busch, Jan Roediger, Bahne H. Bahners, Alfons Schnitzler, Esther Florin, Andrea A. Kühn
Format: Article
Language:English
Published: MDPI AG 2023-05-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/23/11/5238
_version_ 1797596721098784768
author Jeroen G. V. Habets
Rachel K. Spooner
Varvara Mathiopoulou
Lucia K. Feldmann
Johannes L. Busch
Jan Roediger
Bahne H. Bahners
Alfons Schnitzler
Esther Florin
Andrea A. Kühn
author_facet Jeroen G. V. Habets
Rachel K. Spooner
Varvara Mathiopoulou
Lucia K. Feldmann
Johannes L. Busch
Jan Roediger
Bahne H. Bahners
Alfons Schnitzler
Esther Florin
Andrea A. Kühn
author_sort Jeroen G. V. Habets
collection DOAJ
description Bradykinesia is a cardinal hallmark of Parkinson’s disease (PD). Improvement in bradykinesia is an important signature of effective treatment. Finger tapping is commonly used to index bradykinesia, albeit these approaches largely rely on subjective clinical evaluations. Moreover, recently developed automated bradykinesia scoring tools are proprietary and are not suitable for capturing intraday symptom fluctuation. We assessed finger tapping (i.e., Unified Parkinson’s Disease Rating Scale (UPDRS) item 3.4) in 37 people with Parkinson’s disease (PwP) during routine treatment follow ups and analyzed their 350 sessions of 10-s tapping using index finger accelerometry. Herein, we developed and validated ReTap, an open-source tool for the automated prediction of finger tapping scores. ReTap successfully detected tapping blocks in over 94% of cases and extracted clinically relevant kinematic features per tap. Importantly, based on the kinematic features, ReTap predicted expert-rated UPDRS scores significantly better than chance in a hold out validation sample (n = 102). Moreover, ReTap-predicted UPDRS scores correlated positively with expert ratings in over 70% of the individual subjects in the holdout dataset. ReTap has the potential to provide accessible and reliable finger tapping scores, either in the clinic or at home, and may contribute to open-source and detailed analyses of bradykinesia.
first_indexed 2024-03-11T02:57:03Z
format Article
id doaj.art-c4ed289c288241fb818af890b913d9db
institution Directory Open Access Journal
issn 1424-8220
language English
last_indexed 2024-03-11T02:57:03Z
publishDate 2023-05-01
publisher MDPI AG
record_format Article
series Sensors
spelling doaj.art-c4ed289c288241fb818af890b913d9db2023-11-18T08:34:29ZengMDPI AGSensors1424-82202023-05-012311523810.3390/s23115238A First Methodological Development and Validation of ReTap: An Open-Source UPDRS Finger Tapping Assessment Tool Based on Accelerometer-DataJeroen G. V. Habets0Rachel K. Spooner1Varvara Mathiopoulou2Lucia K. Feldmann3Johannes L. Busch4Jan Roediger5Bahne H. Bahners6Alfons Schnitzler7Esther Florin8Andrea A. Kühn9Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Universitaetsmedizin Berlin, 10117 Berlin, GermanyInstitute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, GermanyMovement Disorder and Neuromodulation Unit, Department of Neurology, Charité Universitaetsmedizin Berlin, 10117 Berlin, GermanyMovement Disorder and Neuromodulation Unit, Department of Neurology, Charité Universitaetsmedizin Berlin, 10117 Berlin, GermanyMovement Disorder and Neuromodulation Unit, Department of Neurology, Charité Universitaetsmedizin Berlin, 10117 Berlin, GermanyMovement Disorder and Neuromodulation Unit, Department of Neurology, Charité Universitaetsmedizin Berlin, 10117 Berlin, GermanyInstitute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, GermanyInstitute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, GermanyInstitute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, GermanyMovement Disorder and Neuromodulation Unit, Department of Neurology, Charité Universitaetsmedizin Berlin, 10117 Berlin, GermanyBradykinesia is a cardinal hallmark of Parkinson’s disease (PD). Improvement in bradykinesia is an important signature of effective treatment. Finger tapping is commonly used to index bradykinesia, albeit these approaches largely rely on subjective clinical evaluations. Moreover, recently developed automated bradykinesia scoring tools are proprietary and are not suitable for capturing intraday symptom fluctuation. We assessed finger tapping (i.e., Unified Parkinson’s Disease Rating Scale (UPDRS) item 3.4) in 37 people with Parkinson’s disease (PwP) during routine treatment follow ups and analyzed their 350 sessions of 10-s tapping using index finger accelerometry. Herein, we developed and validated ReTap, an open-source tool for the automated prediction of finger tapping scores. ReTap successfully detected tapping blocks in over 94% of cases and extracted clinically relevant kinematic features per tap. Importantly, based on the kinematic features, ReTap predicted expert-rated UPDRS scores significantly better than chance in a hold out validation sample (n = 102). Moreover, ReTap-predicted UPDRS scores correlated positively with expert ratings in over 70% of the individual subjects in the holdout dataset. ReTap has the potential to provide accessible and reliable finger tapping scores, either in the clinic or at home, and may contribute to open-source and detailed analyses of bradykinesia.https://www.mdpi.com/1424-8220/23/11/5238Parkinson’s diseasebradykinesiafinger tappingaccelerometeropen-sourcemachine learning
spellingShingle Jeroen G. V. Habets
Rachel K. Spooner
Varvara Mathiopoulou
Lucia K. Feldmann
Johannes L. Busch
Jan Roediger
Bahne H. Bahners
Alfons Schnitzler
Esther Florin
Andrea A. Kühn
A First Methodological Development and Validation of ReTap: An Open-Source UPDRS Finger Tapping Assessment Tool Based on Accelerometer-Data
Sensors
Parkinson’s disease
bradykinesia
finger tapping
accelerometer
open-source
machine learning
title A First Methodological Development and Validation of ReTap: An Open-Source UPDRS Finger Tapping Assessment Tool Based on Accelerometer-Data
title_full A First Methodological Development and Validation of ReTap: An Open-Source UPDRS Finger Tapping Assessment Tool Based on Accelerometer-Data
title_fullStr A First Methodological Development and Validation of ReTap: An Open-Source UPDRS Finger Tapping Assessment Tool Based on Accelerometer-Data
title_full_unstemmed A First Methodological Development and Validation of ReTap: An Open-Source UPDRS Finger Tapping Assessment Tool Based on Accelerometer-Data
title_short A First Methodological Development and Validation of ReTap: An Open-Source UPDRS Finger Tapping Assessment Tool Based on Accelerometer-Data
title_sort first methodological development and validation of retap an open source updrs finger tapping assessment tool based on accelerometer data
topic Parkinson’s disease
bradykinesia
finger tapping
accelerometer
open-source
machine learning
url https://www.mdpi.com/1424-8220/23/11/5238
work_keys_str_mv AT jeroengvhabets afirstmethodologicaldevelopmentandvalidationofretapanopensourceupdrsfingertappingassessmenttoolbasedonaccelerometerdata
AT rachelkspooner afirstmethodologicaldevelopmentandvalidationofretapanopensourceupdrsfingertappingassessmenttoolbasedonaccelerometerdata
AT varvaramathiopoulou afirstmethodologicaldevelopmentandvalidationofretapanopensourceupdrsfingertappingassessmenttoolbasedonaccelerometerdata
AT luciakfeldmann afirstmethodologicaldevelopmentandvalidationofretapanopensourceupdrsfingertappingassessmenttoolbasedonaccelerometerdata
AT johanneslbusch afirstmethodologicaldevelopmentandvalidationofretapanopensourceupdrsfingertappingassessmenttoolbasedonaccelerometerdata
AT janroediger afirstmethodologicaldevelopmentandvalidationofretapanopensourceupdrsfingertappingassessmenttoolbasedonaccelerometerdata
AT bahnehbahners afirstmethodologicaldevelopmentandvalidationofretapanopensourceupdrsfingertappingassessmenttoolbasedonaccelerometerdata
AT alfonsschnitzler afirstmethodologicaldevelopmentandvalidationofretapanopensourceupdrsfingertappingassessmenttoolbasedonaccelerometerdata
AT estherflorin afirstmethodologicaldevelopmentandvalidationofretapanopensourceupdrsfingertappingassessmenttoolbasedonaccelerometerdata
AT andreaakuhn afirstmethodologicaldevelopmentandvalidationofretapanopensourceupdrsfingertappingassessmenttoolbasedonaccelerometerdata
AT jeroengvhabets firstmethodologicaldevelopmentandvalidationofretapanopensourceupdrsfingertappingassessmenttoolbasedonaccelerometerdata
AT rachelkspooner firstmethodologicaldevelopmentandvalidationofretapanopensourceupdrsfingertappingassessmenttoolbasedonaccelerometerdata
AT varvaramathiopoulou firstmethodologicaldevelopmentandvalidationofretapanopensourceupdrsfingertappingassessmenttoolbasedonaccelerometerdata
AT luciakfeldmann firstmethodologicaldevelopmentandvalidationofretapanopensourceupdrsfingertappingassessmenttoolbasedonaccelerometerdata
AT johanneslbusch firstmethodologicaldevelopmentandvalidationofretapanopensourceupdrsfingertappingassessmenttoolbasedonaccelerometerdata
AT janroediger firstmethodologicaldevelopmentandvalidationofretapanopensourceupdrsfingertappingassessmenttoolbasedonaccelerometerdata
AT bahnehbahners firstmethodologicaldevelopmentandvalidationofretapanopensourceupdrsfingertappingassessmenttoolbasedonaccelerometerdata
AT alfonsschnitzler firstmethodologicaldevelopmentandvalidationofretapanopensourceupdrsfingertappingassessmenttoolbasedonaccelerometerdata
AT estherflorin firstmethodologicaldevelopmentandvalidationofretapanopensourceupdrsfingertappingassessmenttoolbasedonaccelerometerdata
AT andreaakuhn firstmethodologicaldevelopmentandvalidationofretapanopensourceupdrsfingertappingassessmenttoolbasedonaccelerometerdata