TOTAL EDGE IRREGULARITY STRENGTH DARI GRAF K_n-{e}
In this paper we determine the total edge irregularity strength of , that is a complete graph in which one of its edge has been removed. To do so, we make three cases. In two cases, the labelling of equals to the labelling of the complete graph such that no re-labelling is necessary. Meanwhile, t...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Universitas Udayana
2018-02-01
|
Series: | E-Jurnal Matematika |
Online Access: | https://ojs.unud.ac.id/index.php/mtk/article/view/37604 |
_version_ | 1818955217169809408 |
---|---|
author | . MUARDI QURRATUL AINI , IRWANSYAH |
author_facet | . MUARDI QURRATUL AINI , IRWANSYAH |
author_sort | . MUARDI |
collection | DOAJ |
description | In this paper we determine the total edge irregularity strength of , that is a complete graph in which one of its edge has been removed. To do so, we make three cases. In two cases, the labelling of equals to the labelling of the complete graph such that no re-labelling is necessary. Meanwhile, the third case could not happen. As a result, the total edge irregularity strength of equals to the total edge irregularity strength of Kn |
first_indexed | 2024-12-20T10:34:33Z |
format | Article |
id | doaj.art-c4f86219a34b44428635a468e6467bc2 |
institution | Directory Open Access Journal |
issn | 2303-1751 |
language | English |
last_indexed | 2024-12-20T10:34:33Z |
publishDate | 2018-02-01 |
publisher | Universitas Udayana |
record_format | Article |
series | E-Jurnal Matematika |
spelling | doaj.art-c4f86219a34b44428635a468e6467bc22022-12-21T19:43:40ZengUniversitas UdayanaE-Jurnal Matematika2303-17512018-02-0171364010.24843/MTK.2018.v07.i01.p18237604TOTAL EDGE IRREGULARITY STRENGTH DARI GRAF K_n-{e}. MUARDI0QURRATUL AINI1, IRWANSYAH2Universitas MataramUniversitas MataramUniversitas MataramIn this paper we determine the total edge irregularity strength of , that is a complete graph in which one of its edge has been removed. To do so, we make three cases. In two cases, the labelling of equals to the labelling of the complete graph such that no re-labelling is necessary. Meanwhile, the third case could not happen. As a result, the total edge irregularity strength of equals to the total edge irregularity strength of Knhttps://ojs.unud.ac.id/index.php/mtk/article/view/37604 |
spellingShingle | . MUARDI QURRATUL AINI , IRWANSYAH TOTAL EDGE IRREGULARITY STRENGTH DARI GRAF K_n-{e} E-Jurnal Matematika |
title | TOTAL EDGE IRREGULARITY STRENGTH DARI GRAF K_n-{e} |
title_full | TOTAL EDGE IRREGULARITY STRENGTH DARI GRAF K_n-{e} |
title_fullStr | TOTAL EDGE IRREGULARITY STRENGTH DARI GRAF K_n-{e} |
title_full_unstemmed | TOTAL EDGE IRREGULARITY STRENGTH DARI GRAF K_n-{e} |
title_short | TOTAL EDGE IRREGULARITY STRENGTH DARI GRAF K_n-{e} |
title_sort | total edge irregularity strength dari graf k n e |
url | https://ojs.unud.ac.id/index.php/mtk/article/view/37604 |
work_keys_str_mv | AT muardi totaledgeirregularitystrengthdarigrafkne AT qurratulaini totaledgeirregularitystrengthdarigrafkne AT irwansyah totaledgeirregularitystrengthdarigrafkne |