TOTAL EDGE IRREGULARITY STRENGTH DARI GRAF K_n-{e}

In this paper we determine the total edge irregularity strength of , that is a complete graph in which one of its edge has been removed. To do so, we make three cases. In two cases, the labelling of   equals to the labelling of the complete graph  such that no re-labelling is necessary. Meanwhile, t...

Full description

Bibliographic Details
Main Authors: . MUARDI, QURRATUL AINI, , IRWANSYAH
Format: Article
Language:English
Published: Universitas Udayana 2018-02-01
Series:E-Jurnal Matematika
Online Access:https://ojs.unud.ac.id/index.php/mtk/article/view/37604
_version_ 1818955217169809408
author . MUARDI
QURRATUL AINI
, IRWANSYAH
author_facet . MUARDI
QURRATUL AINI
, IRWANSYAH
author_sort . MUARDI
collection DOAJ
description In this paper we determine the total edge irregularity strength of , that is a complete graph in which one of its edge has been removed. To do so, we make three cases. In two cases, the labelling of   equals to the labelling of the complete graph  such that no re-labelling is necessary. Meanwhile, the third case could not happen. As a result, the total edge irregularity strength of  equals to the total edge irregularity strength of Kn
first_indexed 2024-12-20T10:34:33Z
format Article
id doaj.art-c4f86219a34b44428635a468e6467bc2
institution Directory Open Access Journal
issn 2303-1751
language English
last_indexed 2024-12-20T10:34:33Z
publishDate 2018-02-01
publisher Universitas Udayana
record_format Article
series E-Jurnal Matematika
spelling doaj.art-c4f86219a34b44428635a468e6467bc22022-12-21T19:43:40ZengUniversitas UdayanaE-Jurnal Matematika2303-17512018-02-0171364010.24843/MTK.2018.v07.i01.p18237604TOTAL EDGE IRREGULARITY STRENGTH DARI GRAF K_n-{e}. MUARDI0QURRATUL AINI1, IRWANSYAH2Universitas MataramUniversitas MataramUniversitas MataramIn this paper we determine the total edge irregularity strength of , that is a complete graph in which one of its edge has been removed. To do so, we make three cases. In two cases, the labelling of   equals to the labelling of the complete graph  such that no re-labelling is necessary. Meanwhile, the third case could not happen. As a result, the total edge irregularity strength of  equals to the total edge irregularity strength of Knhttps://ojs.unud.ac.id/index.php/mtk/article/view/37604
spellingShingle . MUARDI
QURRATUL AINI
, IRWANSYAH
TOTAL EDGE IRREGULARITY STRENGTH DARI GRAF K_n-{e}
E-Jurnal Matematika
title TOTAL EDGE IRREGULARITY STRENGTH DARI GRAF K_n-{e}
title_full TOTAL EDGE IRREGULARITY STRENGTH DARI GRAF K_n-{e}
title_fullStr TOTAL EDGE IRREGULARITY STRENGTH DARI GRAF K_n-{e}
title_full_unstemmed TOTAL EDGE IRREGULARITY STRENGTH DARI GRAF K_n-{e}
title_short TOTAL EDGE IRREGULARITY STRENGTH DARI GRAF K_n-{e}
title_sort total edge irregularity strength dari graf k n e
url https://ojs.unud.ac.id/index.php/mtk/article/view/37604
work_keys_str_mv AT muardi totaledgeirregularitystrengthdarigrafkne
AT qurratulaini totaledgeirregularitystrengthdarigrafkne
AT irwansyah totaledgeirregularitystrengthdarigrafkne