Pair correlations in the attractive Hubbard model
The mechanism of fermionic pairing is the key to understanding various phenomena such as high-temperature superconductivity and the pseudogap phase in cuprate materials. We study the pair correlations in the attractive Hubbard model using ultracold fermions in a two-dimensional optical lattice. By c...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
American Physical Society
2020-05-01
|
Series: | Physical Review Research |
Online Access: | http://doi.org/10.1103/PhysRevResearch.2.023210 |
Summary: | The mechanism of fermionic pairing is the key to understanding various phenomena such as high-temperature superconductivity and the pseudogap phase in cuprate materials. We study the pair correlations in the attractive Hubbard model using ultracold fermions in a two-dimensional optical lattice. By combining the fluctuation-dissipation theorem and the compressibility equation of state, we extract the interacting pair-correlation functions and deduce a characteristic length scale of pairs as a function of interaction and density filling. At sufficiently low filling and weak onsite interaction, we observe that the pair correlations extend over a few lattice sites even at temperatures above the superfluid transition temperature. |
---|---|
ISSN: | 2643-1564 |