In situ probing of the present-day zircon-bearing magma chamber at Krafla, Northeastern Iceland

Active felsic magmatism has been rarely probed in situ by drilling but one recent exception is quenched rhyolite sampled during the 2009 Iceland Deep Drilling Project (IDDP). We report finding of rare zircons of up to ∼100 µm in size in rhyolite glasses from the IDDP-1 well products and the host 172...

Full description

Bibliographic Details
Main Authors: Anastassia Y. Borisova, Oleg E. Melnik, Nicolas Gaborit, Ilya N. Bindeman, Thibault Traillou, Marie Raffarin, Andri Stefánsson, Oscar Laurent, Mathieu Leisen, Xavier Llovet, Philippe de Parseval, Arnaud Proietti, Stephen Tait
Format: Article
Language:English
Published: Frontiers Media S.A. 2023-11-01
Series:Frontiers in Earth Science
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/feart.2023.1307303/full
_version_ 1797626646859087872
author Anastassia Y. Borisova
Oleg E. Melnik
Oleg E. Melnik
Nicolas Gaborit
Ilya N. Bindeman
Thibault Traillou
Marie Raffarin
Andri Stefánsson
Oscar Laurent
Mathieu Leisen
Xavier Llovet
Philippe de Parseval
Arnaud Proietti
Stephen Tait
author_facet Anastassia Y. Borisova
Oleg E. Melnik
Oleg E. Melnik
Nicolas Gaborit
Ilya N. Bindeman
Thibault Traillou
Marie Raffarin
Andri Stefánsson
Oscar Laurent
Mathieu Leisen
Xavier Llovet
Philippe de Parseval
Arnaud Proietti
Stephen Tait
author_sort Anastassia Y. Borisova
collection DOAJ
description Active felsic magmatism has been rarely probed in situ by drilling but one recent exception is quenched rhyolite sampled during the 2009 Iceland Deep Drilling Project (IDDP). We report finding of rare zircons of up to ∼100 µm in size in rhyolite glasses from the IDDP-1 well products and the host 1724 AD Viti granophyres. The applied SHRIMP U-Th dating for both the IDDP and the Viti granophyre zircons gives zero-age (±2 kyr), and therefore suggests that the IDDP-1 zircons have crystallized from an active magma intrusion rather than due to the 20–80 ka post-caldera magmatic episodes recorded by nearby domes and ridges. Ti-in-zircon geothermometer for Viti granophyre reveals zircon crystallization temperatures ∼800°C–900°C, whereas IDDP-1 rhyolite zircon cores show Ti content higher than 100 ppm, corresponding to temperatures up to ∼1,100°C according to the Ti-in-zircon thermometer. According to our thermochemical model at such elevated temperatures as 1,100°C, rhyolitic magma cannot be saturated with zircon and zircon crystallization is not possible. We explain this controversy by either kinetic effects or non-ideal Ti incorporation into growing zircons at low pressures that start to grow from nucleus at temperatures ∼930°C. High temperatures recorded by IDDP-1 zircon together with an occurrence of baddeleyite require that the rhyolite magma formed by partial melting of the host granophyre due to basaltic magma intrusion. Zr concentration profiles in glass around zircons are flat, suggesting residence in rhyolitic melt for >4 years. In our thermochemical modeling, three scenarios are considered. The host felsite rocks are intruded by: 1) a basaltic sill, 2) rhyolite magma 3) rhyolite sill connected to a deeper magmatic system. Based on the solution of the heat conduction equation accounting for the release of latent heat and effective thermal conductivity, these data confirm that the rhyolite magma could be produced by felsic crust melting as a result of injection of a basaltic or rhyolite sill during the Krafla Fires eruption (1975 AD).
first_indexed 2024-03-11T10:13:09Z
format Article
id doaj.art-c5136e7d4c404236aeb5818224379440
institution Directory Open Access Journal
issn 2296-6463
language English
last_indexed 2024-03-11T10:13:09Z
publishDate 2023-11-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Earth Science
spelling doaj.art-c5136e7d4c404236aeb58182243794402023-11-16T13:25:55ZengFrontiers Media S.A.Frontiers in Earth Science2296-64632023-11-011110.3389/feart.2023.13073031307303In situ probing of the present-day zircon-bearing magma chamber at Krafla, Northeastern IcelandAnastassia Y. Borisova0Oleg E. Melnik1Oleg E. Melnik2Nicolas Gaborit3Ilya N. Bindeman4Thibault Traillou5Marie Raffarin6Andri Stefánsson7Oscar Laurent8Mathieu Leisen9Xavier Llovet10Philippe de Parseval11Arnaud Proietti12Stephen Tait13Géosciences Environnement Toulouse, GET, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Université Toulouse III Paul Sabatier, Université de Toulouse, Toulouse, FranceGéosciences Environnement Toulouse, GET, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Université Toulouse III Paul Sabatier, Université de Toulouse, Toulouse, FranceISTerre, Centre National de la Recherche Scientifique, Université Grenoble Alpes, Grenoble, FranceGéosciences Environnement Toulouse, GET, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Université Toulouse III Paul Sabatier, Université de Toulouse, Toulouse, FranceDepartment of Earth Sciences, University of Oregon, Eugene, OR, United StatesGéosciences Environnement Toulouse, GET, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Université Toulouse III Paul Sabatier, Université de Toulouse, Toulouse, FranceGéosciences Environnement Toulouse, GET, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Université Toulouse III Paul Sabatier, Université de Toulouse, Toulouse, FranceFaculty of Earth Sciences, University of Iceland, Reykjavik, IcelandGéosciences Environnement Toulouse, GET, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Université Toulouse III Paul Sabatier, Université de Toulouse, Toulouse, FranceGéosciences Environnement Toulouse, GET, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Université Toulouse III Paul Sabatier, Université de Toulouse, Toulouse, FranceScientific and Technological Centers, Universitat de Barcelona, Barcelona, SpainGéosciences Environnement Toulouse, GET, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Université Toulouse III Paul Sabatier, Université de Toulouse, Toulouse, FranceUAR Raimond Castaing, Centre National de la Recherche Scientifique, Institut National Polytechnique de Toulouse, Université Toulouse III Paul Sabatier, Institut National des Sciences Appliquées de Toulouse, Université de Toulouse, Toulouse, FranceGéosciences Environnement Toulouse, GET, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Université Toulouse III Paul Sabatier, Université de Toulouse, Toulouse, FranceActive felsic magmatism has been rarely probed in situ by drilling but one recent exception is quenched rhyolite sampled during the 2009 Iceland Deep Drilling Project (IDDP). We report finding of rare zircons of up to ∼100 µm in size in rhyolite glasses from the IDDP-1 well products and the host 1724 AD Viti granophyres. The applied SHRIMP U-Th dating for both the IDDP and the Viti granophyre zircons gives zero-age (±2 kyr), and therefore suggests that the IDDP-1 zircons have crystallized from an active magma intrusion rather than due to the 20–80 ka post-caldera magmatic episodes recorded by nearby domes and ridges. Ti-in-zircon geothermometer for Viti granophyre reveals zircon crystallization temperatures ∼800°C–900°C, whereas IDDP-1 rhyolite zircon cores show Ti content higher than 100 ppm, corresponding to temperatures up to ∼1,100°C according to the Ti-in-zircon thermometer. According to our thermochemical model at such elevated temperatures as 1,100°C, rhyolitic magma cannot be saturated with zircon and zircon crystallization is not possible. We explain this controversy by either kinetic effects or non-ideal Ti incorporation into growing zircons at low pressures that start to grow from nucleus at temperatures ∼930°C. High temperatures recorded by IDDP-1 zircon together with an occurrence of baddeleyite require that the rhyolite magma formed by partial melting of the host granophyre due to basaltic magma intrusion. Zr concentration profiles in glass around zircons are flat, suggesting residence in rhyolitic melt for >4 years. In our thermochemical modeling, three scenarios are considered. The host felsite rocks are intruded by: 1) a basaltic sill, 2) rhyolite magma 3) rhyolite sill connected to a deeper magmatic system. Based on the solution of the heat conduction equation accounting for the release of latent heat and effective thermal conductivity, these data confirm that the rhyolite magma could be produced by felsic crust melting as a result of injection of a basaltic or rhyolite sill during the Krafla Fires eruption (1975 AD).https://www.frontiersin.org/articles/10.3389/feart.2023.1307303/fullIceland Deep Drilling ProjectIDDP-1 samplezirconrhyolite magma genesisU-Th agegranophyre
spellingShingle Anastassia Y. Borisova
Oleg E. Melnik
Oleg E. Melnik
Nicolas Gaborit
Ilya N. Bindeman
Thibault Traillou
Marie Raffarin
Andri Stefánsson
Oscar Laurent
Mathieu Leisen
Xavier Llovet
Philippe de Parseval
Arnaud Proietti
Stephen Tait
In situ probing of the present-day zircon-bearing magma chamber at Krafla, Northeastern Iceland
Frontiers in Earth Science
Iceland Deep Drilling Project
IDDP-1 sample
zircon
rhyolite magma genesis
U-Th age
granophyre
title In situ probing of the present-day zircon-bearing magma chamber at Krafla, Northeastern Iceland
title_full In situ probing of the present-day zircon-bearing magma chamber at Krafla, Northeastern Iceland
title_fullStr In situ probing of the present-day zircon-bearing magma chamber at Krafla, Northeastern Iceland
title_full_unstemmed In situ probing of the present-day zircon-bearing magma chamber at Krafla, Northeastern Iceland
title_short In situ probing of the present-day zircon-bearing magma chamber at Krafla, Northeastern Iceland
title_sort in situ probing of the present day zircon bearing magma chamber at krafla northeastern iceland
topic Iceland Deep Drilling Project
IDDP-1 sample
zircon
rhyolite magma genesis
U-Th age
granophyre
url https://www.frontiersin.org/articles/10.3389/feart.2023.1307303/full
work_keys_str_mv AT anastassiayborisova insituprobingofthepresentdayzirconbearingmagmachamberatkraflanortheasterniceland
AT olegemelnik insituprobingofthepresentdayzirconbearingmagmachamberatkraflanortheasterniceland
AT olegemelnik insituprobingofthepresentdayzirconbearingmagmachamberatkraflanortheasterniceland
AT nicolasgaborit insituprobingofthepresentdayzirconbearingmagmachamberatkraflanortheasterniceland
AT ilyanbindeman insituprobingofthepresentdayzirconbearingmagmachamberatkraflanortheasterniceland
AT thibaulttraillou insituprobingofthepresentdayzirconbearingmagmachamberatkraflanortheasterniceland
AT marieraffarin insituprobingofthepresentdayzirconbearingmagmachamberatkraflanortheasterniceland
AT andristefansson insituprobingofthepresentdayzirconbearingmagmachamberatkraflanortheasterniceland
AT oscarlaurent insituprobingofthepresentdayzirconbearingmagmachamberatkraflanortheasterniceland
AT mathieuleisen insituprobingofthepresentdayzirconbearingmagmachamberatkraflanortheasterniceland
AT xavierllovet insituprobingofthepresentdayzirconbearingmagmachamberatkraflanortheasterniceland
AT philippedeparseval insituprobingofthepresentdayzirconbearingmagmachamberatkraflanortheasterniceland
AT arnaudproietti insituprobingofthepresentdayzirconbearingmagmachamberatkraflanortheasterniceland
AT stephentait insituprobingofthepresentdayzirconbearingmagmachamberatkraflanortheasterniceland