Design a Hybrid Approach for the Classification and Recognition of Traffic Signs Using Machine Learning

The automatic system for classifying traffic signs is a critical task of Advanced Driver Assistance Systems (ADAS) and a fundamental technique utilized as an integral part of the various vehicles. The recognizable features of a traffic image are utilized for their classification. Traffic signs are...

Full description

Bibliographic Details
Main Authors: Guma Ali, Emre Sadıkoğlu, Hatim Abdelhak
Format: Article
Language:English
Published: College of Computer and Information Technology – University of Wasit, Iraq 2023-06-01
Series:Wasit Journal of Computer and Mathematics Science
Subjects:
Online Access:https://wjcm.uowasit.edu.iq/index.php/wjcm/article/view/151
Description
Summary:The automatic system for classifying traffic signs is a critical task of Advanced Driver Assistance Systems (ADAS) and a fundamental technique utilized as an integral part of the various vehicles. The recognizable features of a traffic image are utilized for their classification. Traffic signs are designed to contain specific shapes and colours, with some text and some symbols with high contrast to the background. This paper proposes a hybrid approach for classifying traffic signs by SIFT for image feature extraction and SVM for training and classification. The proposed work is divided into phases: pre-processing, Feature Extraction, Training, and Classification. MATLAB is used for the implementation purpose of the proposed framework, and classification is carried out by utilizing real traffic sign images
ISSN:2788-5879
2788-5887