A Complete Feasible and Nodes-Grouped Scheduling Algorithm for Wireless Rechargeable Sensor Networks in Tunnels

Limited energy in each node is the major design constraint in wireless sensor networks (WSNs), especially in mine tunnel scenario where the WSNs are required to work perpetually. To overcome this limit, wireless rechargeable sensor networks (WRSNs) have been proposed and studied extensively over the...

Full description

Bibliographic Details
Main Authors: Xiaoming Liu, Yu Guo, Wen Li, Min Hua, Enjie Ding
Format: Article
Language:English
Published: MDPI AG 2018-10-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/18/10/3410
Description
Summary:Limited energy in each node is the major design constraint in wireless sensor networks (WSNs), especially in mine tunnel scenario where the WSNs are required to work perpetually. To overcome this limit, wireless rechargeable sensor networks (WRSNs) have been proposed and studied extensively over the last few years. To keep the sensor nodes working perpetually, one fundamental question is how to design the charging scheme. Considering the special tunnel scenario, this paper proposes a Complete Feasible Charging Strategy (CFCS) to ensure the whole WRSNs is working perpetually. We divide the whole WRSN into several subnetworks and use several mobile chargers (MCs) to charge every subnetwork periodically and orderly. For a subnetwork, we formulate the main problem as a charging time distribution problem. A series of theorems are deduced to restrict the charging configurations, and a group nodes mechanism is proposed to expand the scale of the WRSNs. Finally, we conduct extensive simulations to evaluate the performance of the proposed algorithms. The results demonstrate which of the CFCS boundary theorems is correct and that our proposed CFCS can keep the WRSNs working perpetually. Furthermore, our Nodes-Grouped mechanism can support more nodes in WRSN compared to the state-of-the-art baseline methods.
ISSN:1424-8220