Summary: | Abstract Background Cellular and molecular changes occur during aging, decreasing organ function. The aging process was measured by several biomarkers, including DNA methylation (DNAm), an epigenetic change regulating gene expression, which is highly accurate at predicting biological age. DNAm is heritable and therefore varies between different populations. Aim To assess blood DNA methylation changes as epigenetic clocks in the male and female Egyptian population. Pyrosequencing was used to measure the methylation of nine CpG sites in blood samples from 100 healthy Egyptians (18–69 years) using a cross-sectional study. Two age predicted models based on the ELOVL2 gene were compared in three age categories and correlated in all age groups despite decreasing accuracy with increasing age. Results The mean absolute deviation (MAD) using the 1st and 2nd age predicted models for 18–40 years was 1.06 and 2.7, respectively; for 41–60 years, it was 4.4 and 3.8, respectively; and for > 60 years, it was 7.7 and 7.0, respectively. No significant differences in DNA methylation were found between the sexes. Conclusion DNA methylation of the ELOVL2 gene can be used as an accurate biomarker for age estimation. Additionally, this method has the potential to be more accurate than traditional methods of age estimation.
|