Effect of Rotational Speed Modulation on the Weakly Nonlinear Heat Transfer in Walter-B Viscoelastic Fluid in the Highly Permeable Porous Medium

In this article, a study on the stability of Walter-B viscoelastic fluid in the highly permeable porous medium under the rotational speed modulation is presented. The impact of rotational modulation on heat transport is performed through a weakly nonlinear analysis. A perturbation procedure based on...

Full description

Bibliographic Details
Main Authors: Anand Kumar, Vinod K. Gupta, Neetu Meena, Ishak Hashim
Format: Article
Language:English
Published: MDPI AG 2020-08-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/9/1448
Description
Summary:In this article, a study on the stability of Walter-B viscoelastic fluid in the highly permeable porous medium under the rotational speed modulation is presented. The impact of rotational modulation on heat transport is performed through a weakly nonlinear analysis. A perturbation procedure based on the small amplitude of the perturbing parameter is used to study the combined effect of rotation and permeability on the stability through a porous medium. Rayleigh–Bénard convection with the Coriolis expression has been examined to explain the impact of rotation on the convective flow. The graphical result of different parameters like modified Prandtl number, Darcy number, Rayleigh number, and Taylor number on heat transfer have discussed. Furthermore, it is found that the modified Prandtl number decelerates the heat transport which may be due to the combined effect of elastic parameter and Taylor number.
ISSN:2227-7390