Best Practices for Body Temperature Measurement with Infrared Thermography: External Factors Affecting Accuracy

Infrared thermographs (IRTs) are commonly used during disease pandemics to screen individuals with elevated body temperature (EBT). To address the limited research on external factors affecting IRT accuracy, we conducted benchtop measurements and computer simulations with two IRTs, with or without a...

Full description

Bibliographic Details
Main Authors: Siavash Mazdeyasna, Pejman Ghassemi, Quanzeng Wang
Format: Article
Language:English
Published: MDPI AG 2023-09-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/23/18/8011
_version_ 1797576926959763456
author Siavash Mazdeyasna
Pejman Ghassemi
Quanzeng Wang
author_facet Siavash Mazdeyasna
Pejman Ghassemi
Quanzeng Wang
author_sort Siavash Mazdeyasna
collection DOAJ
description Infrared thermographs (IRTs) are commonly used during disease pandemics to screen individuals with elevated body temperature (EBT). To address the limited research on external factors affecting IRT accuracy, we conducted benchtop measurements and computer simulations with two IRTs, with or without an external temperature reference source (ETRS) for temperature compensation. The combination of an IRT and an ETRS forms a screening thermograph (ST). We investigated the effects of viewing angle (<i>θ</i>, 0–75°), ETRS set temperature (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mrow><mi>E</mi><mi>T</mi><mi>R</mi><mi>S</mi></mrow></msub></mrow></semantics></math></inline-formula>, 30–40 °C), ambient temperature (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mrow><mi>a</mi><mi>t</mi><mi>m</mi></mrow></msub></mrow></semantics></math></inline-formula>, 18–32 °C), relative humidity (RH, 15–80%), and working distance (<i>d</i>, 0.4–2.8 m). We discovered that STs exhibited higher accuracy compared to IRTs alone. Across the tested ranges of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mrow><mi>a</mi><mi>t</mi><mi>m</mi></mrow></msub></mrow></semantics></math></inline-formula> and RH, both IRTs exhibited absolute measurement errors of less than 0.97 °C, while both STs maintained absolute measurement errors of less than 0.12 °C. The optimal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mrow><mi>E</mi><mi>T</mi><mi>R</mi><mi>S</mi></mrow></msub></mrow></semantics></math></inline-formula> for EBT detection was 36–37 °C. When <i>θ</i> was below 30°, the two STs underestimated calibration source (CS) temperature (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mrow><mi>C</mi><mi>S</mi></mrow></msub></mrow></semantics></math></inline-formula>) of less than 0.05 °C. The computer simulations showed absolute temperature differences of up to 0.28 °C and 0.04 °C between estimated and theoretical temperatures for IRTs and STs, respectively, considering <i>d</i> of 0.2–3.0 m, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mrow><mi>a</mi><mi>t</mi><mi>m</mi></mrow></msub></mrow></semantics></math></inline-formula> of 15–35 °C, and RH of 5–95%. The results highlight the importance of precise calibration and environmental control for reliable temperature readings and suggest proper ranges for these factors, aiming to enhance current standard documents and best practice guidelines. These insights enhance our understanding of IRT performance and their sensitivity to various factors, thereby facilitating the development of best practices for accurate EBT measurement.
first_indexed 2024-03-10T22:01:45Z
format Article
id doaj.art-c545809863304c148c0f38f5aff6dccf
institution Directory Open Access Journal
issn 1424-8220
language English
last_indexed 2024-03-10T22:01:45Z
publishDate 2023-09-01
publisher MDPI AG
record_format Article
series Sensors
spelling doaj.art-c545809863304c148c0f38f5aff6dccf2023-11-19T12:57:24ZengMDPI AGSensors1424-82202023-09-012318801110.3390/s23188011Best Practices for Body Temperature Measurement with Infrared Thermography: External Factors Affecting AccuracySiavash Mazdeyasna0Pejman Ghassemi1Quanzeng Wang2Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USACenter for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USACenter for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USAInfrared thermographs (IRTs) are commonly used during disease pandemics to screen individuals with elevated body temperature (EBT). To address the limited research on external factors affecting IRT accuracy, we conducted benchtop measurements and computer simulations with two IRTs, with or without an external temperature reference source (ETRS) for temperature compensation. The combination of an IRT and an ETRS forms a screening thermograph (ST). We investigated the effects of viewing angle (<i>θ</i>, 0–75°), ETRS set temperature (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mrow><mi>E</mi><mi>T</mi><mi>R</mi><mi>S</mi></mrow></msub></mrow></semantics></math></inline-formula>, 30–40 °C), ambient temperature (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mrow><mi>a</mi><mi>t</mi><mi>m</mi></mrow></msub></mrow></semantics></math></inline-formula>, 18–32 °C), relative humidity (RH, 15–80%), and working distance (<i>d</i>, 0.4–2.8 m). We discovered that STs exhibited higher accuracy compared to IRTs alone. Across the tested ranges of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mrow><mi>a</mi><mi>t</mi><mi>m</mi></mrow></msub></mrow></semantics></math></inline-formula> and RH, both IRTs exhibited absolute measurement errors of less than 0.97 °C, while both STs maintained absolute measurement errors of less than 0.12 °C. The optimal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mrow><mi>E</mi><mi>T</mi><mi>R</mi><mi>S</mi></mrow></msub></mrow></semantics></math></inline-formula> for EBT detection was 36–37 °C. When <i>θ</i> was below 30°, the two STs underestimated calibration source (CS) temperature (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mrow><mi>C</mi><mi>S</mi></mrow></msub></mrow></semantics></math></inline-formula>) of less than 0.05 °C. The computer simulations showed absolute temperature differences of up to 0.28 °C and 0.04 °C between estimated and theoretical temperatures for IRTs and STs, respectively, considering <i>d</i> of 0.2–3.0 m, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mrow><mi>a</mi><mi>t</mi><mi>m</mi></mrow></msub></mrow></semantics></math></inline-formula> of 15–35 °C, and RH of 5–95%. The results highlight the importance of precise calibration and environmental control for reliable temperature readings and suggest proper ranges for these factors, aiming to enhance current standard documents and best practice guidelines. These insights enhance our understanding of IRT performance and their sensitivity to various factors, thereby facilitating the development of best practices for accurate EBT measurement.https://www.mdpi.com/1424-8220/23/18/8011elevated body temperatureinfrared thermographthermographyISO/TR 13154viewing angleexternal temperature reference source
spellingShingle Siavash Mazdeyasna
Pejman Ghassemi
Quanzeng Wang
Best Practices for Body Temperature Measurement with Infrared Thermography: External Factors Affecting Accuracy
Sensors
elevated body temperature
infrared thermograph
thermography
ISO/TR 13154
viewing angle
external temperature reference source
title Best Practices for Body Temperature Measurement with Infrared Thermography: External Factors Affecting Accuracy
title_full Best Practices for Body Temperature Measurement with Infrared Thermography: External Factors Affecting Accuracy
title_fullStr Best Practices for Body Temperature Measurement with Infrared Thermography: External Factors Affecting Accuracy
title_full_unstemmed Best Practices for Body Temperature Measurement with Infrared Thermography: External Factors Affecting Accuracy
title_short Best Practices for Body Temperature Measurement with Infrared Thermography: External Factors Affecting Accuracy
title_sort best practices for body temperature measurement with infrared thermography external factors affecting accuracy
topic elevated body temperature
infrared thermograph
thermography
ISO/TR 13154
viewing angle
external temperature reference source
url https://www.mdpi.com/1424-8220/23/18/8011
work_keys_str_mv AT siavashmazdeyasna bestpracticesforbodytemperaturemeasurementwithinfraredthermographyexternalfactorsaffectingaccuracy
AT pejmanghassemi bestpracticesforbodytemperaturemeasurementwithinfraredthermographyexternalfactorsaffectingaccuracy
AT quanzengwang bestpracticesforbodytemperaturemeasurementwithinfraredthermographyexternalfactorsaffectingaccuracy