Reliability-Based Design Optimization of Structures Considering Uncertainties of Earthquakes Based on Efficient Gaussian Process Regression Metamodeling
The complexity of earthquakes and the nonlinearity of structures tend to increase the calculation cost of reliability-based design optimization (RBDO). To reduce computational burden and to effectively consider the uncertainties of ground motions and structural parameters, an efficient RBDO method f...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-02-01
|
Series: | Axioms |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-1680/11/2/81 |
_version_ | 1797482759520780288 |
---|---|
author | Yanjie Xiao Feng Yue Xinwei Wang Xun’an Zhang |
author_facet | Yanjie Xiao Feng Yue Xinwei Wang Xun’an Zhang |
author_sort | Yanjie Xiao |
collection | DOAJ |
description | The complexity of earthquakes and the nonlinearity of structures tend to increase the calculation cost of reliability-based design optimization (RBDO). To reduce computational burden and to effectively consider the uncertainties of ground motions and structural parameters, an efficient RBDO method for structures under stochastic earthquakes based on adaptive Gaussian process regression (GPR) metamodeling is proposed in this study. In this method, the uncertainties of ground motions are described by the record-to-record variation and the randomness of intensity measure (IM). A GPR model is constructed to obtain the approximations of the engineering demand parameter (EDP), and an active learning (AL) strategy is presented to adaptively update the design of experiments (DoE) of this metamodel. Based on the reliability of design variables calculated by Monte Carlo simulation (MCS), an optimal solution can be obtained by an efficient global optimization (EGO) algorithm. To validate the effectiveness and efficiency of the developed method, it is applied to the optimization problems of a steel frame and a reinforced concrete frame and compared with the existing methods. The results show that this method can provide accurate reliability information for seismic design and can deal with the problems of minimizing costs under the probabilistic constraint and problems of improving the seismic reliability under limited costs. |
first_indexed | 2024-03-09T22:37:03Z |
format | Article |
id | doaj.art-c5561da86cb446129d8bc680921ec158 |
institution | Directory Open Access Journal |
issn | 2075-1680 |
language | English |
last_indexed | 2024-03-09T22:37:03Z |
publishDate | 2022-02-01 |
publisher | MDPI AG |
record_format | Article |
series | Axioms |
spelling | doaj.art-c5561da86cb446129d8bc680921ec1582023-11-23T18:47:23ZengMDPI AGAxioms2075-16802022-02-011128110.3390/axioms11020081Reliability-Based Design Optimization of Structures Considering Uncertainties of Earthquakes Based on Efficient Gaussian Process Regression MetamodelingYanjie Xiao0Feng Yue1Xinwei Wang2Xun’an Zhang3School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an 710072, ChinaSchool of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an 710072, ChinaSchool of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an 710072, ChinaSchool of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an 710072, ChinaThe complexity of earthquakes and the nonlinearity of structures tend to increase the calculation cost of reliability-based design optimization (RBDO). To reduce computational burden and to effectively consider the uncertainties of ground motions and structural parameters, an efficient RBDO method for structures under stochastic earthquakes based on adaptive Gaussian process regression (GPR) metamodeling is proposed in this study. In this method, the uncertainties of ground motions are described by the record-to-record variation and the randomness of intensity measure (IM). A GPR model is constructed to obtain the approximations of the engineering demand parameter (EDP), and an active learning (AL) strategy is presented to adaptively update the design of experiments (DoE) of this metamodel. Based on the reliability of design variables calculated by Monte Carlo simulation (MCS), an optimal solution can be obtained by an efficient global optimization (EGO) algorithm. To validate the effectiveness and efficiency of the developed method, it is applied to the optimization problems of a steel frame and a reinforced concrete frame and compared with the existing methods. The results show that this method can provide accurate reliability information for seismic design and can deal with the problems of minimizing costs under the probabilistic constraint and problems of improving the seismic reliability under limited costs.https://www.mdpi.com/2075-1680/11/2/81seismic reliability analysisnonlinear structurereliability-based design optimizationadaptive metamodelinggaussian process regressionMonte Carlo simulation |
spellingShingle | Yanjie Xiao Feng Yue Xinwei Wang Xun’an Zhang Reliability-Based Design Optimization of Structures Considering Uncertainties of Earthquakes Based on Efficient Gaussian Process Regression Metamodeling Axioms seismic reliability analysis nonlinear structure reliability-based design optimization adaptive metamodeling gaussian process regression Monte Carlo simulation |
title | Reliability-Based Design Optimization of Structures Considering Uncertainties of Earthquakes Based on Efficient Gaussian Process Regression Metamodeling |
title_full | Reliability-Based Design Optimization of Structures Considering Uncertainties of Earthquakes Based on Efficient Gaussian Process Regression Metamodeling |
title_fullStr | Reliability-Based Design Optimization of Structures Considering Uncertainties of Earthquakes Based on Efficient Gaussian Process Regression Metamodeling |
title_full_unstemmed | Reliability-Based Design Optimization of Structures Considering Uncertainties of Earthquakes Based on Efficient Gaussian Process Regression Metamodeling |
title_short | Reliability-Based Design Optimization of Structures Considering Uncertainties of Earthquakes Based on Efficient Gaussian Process Regression Metamodeling |
title_sort | reliability based design optimization of structures considering uncertainties of earthquakes based on efficient gaussian process regression metamodeling |
topic | seismic reliability analysis nonlinear structure reliability-based design optimization adaptive metamodeling gaussian process regression Monte Carlo simulation |
url | https://www.mdpi.com/2075-1680/11/2/81 |
work_keys_str_mv | AT yanjiexiao reliabilitybaseddesignoptimizationofstructuresconsideringuncertaintiesofearthquakesbasedonefficientgaussianprocessregressionmetamodeling AT fengyue reliabilitybaseddesignoptimizationofstructuresconsideringuncertaintiesofearthquakesbasedonefficientgaussianprocessregressionmetamodeling AT xinweiwang reliabilitybaseddesignoptimizationofstructuresconsideringuncertaintiesofearthquakesbasedonefficientgaussianprocessregressionmetamodeling AT xunanzhang reliabilitybaseddesignoptimizationofstructuresconsideringuncertaintiesofearthquakesbasedonefficientgaussianprocessregressionmetamodeling |