Application of genetic programming for proton-proton interactions

Bibliographic Details
Main Author: El-Dahshan EL-Sayed
Format: Article
Language:English
Published: De Gruyter 2011-06-01
Series:Open Physics
Subjects:
Online Access:https://doi.org/10.2478/s11534-010-0088-7
_version_ 1819135743051694080
author El-Dahshan EL-Sayed
author_facet El-Dahshan EL-Sayed
author_sort El-Dahshan EL-Sayed
collection DOAJ
first_indexed 2024-12-22T10:23:56Z
format Article
id doaj.art-c55c85c0138444768cb955a44ed45028
institution Directory Open Access Journal
issn 2391-5471
language English
last_indexed 2024-12-22T10:23:56Z
publishDate 2011-06-01
publisher De Gruyter
record_format Article
series Open Physics
spelling doaj.art-c55c85c0138444768cb955a44ed450282022-12-21T18:29:32ZengDe GruyterOpen Physics2391-54712011-06-019387488310.2478/s11534-010-0088-7Application of genetic programming for proton-proton interactionsEl-Dahshan EL-Sayed0Department of Physics, Faculty of Sciences, Ain Shams University, Abbassia, Cairo, 11566, Egypthttps://doi.org/10.2478/s11534-010-0088-7proton-proton interactionmultiplicity distributionmodelingmachine learninggenetic programming
spellingShingle El-Dahshan EL-Sayed
Application of genetic programming for proton-proton interactions
Open Physics
proton-proton interaction
multiplicity distribution
modeling
machine learning
genetic programming
title Application of genetic programming for proton-proton interactions
title_full Application of genetic programming for proton-proton interactions
title_fullStr Application of genetic programming for proton-proton interactions
title_full_unstemmed Application of genetic programming for proton-proton interactions
title_short Application of genetic programming for proton-proton interactions
title_sort application of genetic programming for proton proton interactions
topic proton-proton interaction
multiplicity distribution
modeling
machine learning
genetic programming
url https://doi.org/10.2478/s11534-010-0088-7
work_keys_str_mv AT eldahshanelsayed applicationofgeneticprogrammingforprotonprotoninteractions