Radical scavenging activity of some natural tropolones by density functional theory

The ground state neutral geometries of some natural tropolones, i.e. stipitatonic acid (AF1), stipitalide (AF2), stipitaldehydic acid (AF3) and methyl stipitate (AF4) have been optimized by using Density Functional Theory (DFT) at B3LYP/6-31G*, B3LYP/6-31G**, B3LYP/6-31+G* and B3LYP/6-31+G** levels...

Full description

Bibliographic Details
Main Authors: A. G. Al-Sehemi, A. Irfan, A. al Fahad, M. Alfaifi
Format: Article
Language:English
Published: Chemical Society of Ethiopia 2017-07-01
Series:Bulletin of the Chemical Society of Ethiopia
Subjects:
Online Access:https://www.ajol.info/index.php/bcse/article/view/158849
Description
Summary:The ground state neutral geometries of some natural tropolones, i.e. stipitatonic acid (AF1), stipitalide (AF2), stipitaldehydic acid (AF3) and methyl stipitate (AF4) have been optimized by using Density Functional Theory (DFT) at B3LYP/6-31G*, B3LYP/6-31G**, B3LYP/6-31+G* and B3LYP/6-31+G** levels of theory. The excited state geometries of AF1-AF4 were optimized by adopting the Time Dependent Density Functional Theory (TDDFT) at the same levels of theory. The frequencies and cation species of AF1-AF4 were also computed at all the above mentioned levels of theory. We shed light on the electro-optical and molecular properties, e.g. energy gaps, highest occupied molecular orbitals, lowest unoccupied molecular orbitals, absorption wavelengths, electronegativity (χ), hardness (η), electrophilicity (ω), softness (S), electrophilicity index (ωi) and the radical scavenging activity (RSA). Hydrogen atom transfer (HAT) and one-electron transfer mechanisms have been discussed to shed light on the RSA. The smallest ionization potential and bond dissociation energy of AF4 are revealing that this compound would have more RSA than those of other counterparts.
ISSN:1011-3924
1726-801X