Comparison of Three High Resolution Real-Time Spectrometers for Microwave Ozone Profiling Instruments

In this contribution, we present a comparison of three digital real-time spectrometers used in passive remote sensing of ozone and other trace gases in the middle atmosphere. During a period of six months, we connected the spectrometers to the same radiometric front-end to perform parallel observati...

Full description

Bibliographic Details
Main Authors: Eric Sauvageat, Roland Albers, Mikko Kotiranta, Klemens Hocke, Richard Gomez, Gerald Nedoluha, Axel Murk
Format: Article
Language:English
Published: IEEE 2021-01-01
Series:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9546538/
Description
Summary:In this contribution, we present a comparison of three digital real-time spectrometers used in passive remote sensing of ozone and other trace gases in the middle atmosphere. During a period of six months, we connected the spectrometers to the same radiometric front-end to perform parallel observations of the ozone emission line at 110.836 GHz. This allowed us to better characterize a bias previously observed on the integrated spectra of the Acqiris AC240, a widely used digital spectrometer which has been used for more than a decade in many operational microwave radiometers. We investigated the bias under different atmospheric conditions and found that it is caused by multiple sources. Nonlinearities in the calibration are responsible for part of the bias, but a larger contribution stems from a second effect in the AC240. Although this error source is still partly unexplained, we found that a simple correction scheme simulating a spectral leakage can be applied to the integrated spectra of the AC240 and worked well on our range of observations. We also show that by applying our bias correction to the spectra, we can correct the bias in the ozone retrievals. There is still a need for further measurements to validate this approximate correction, but it could help to correct the numerous time series of ozone and other atmospheric constituents recorded by the AC240.
ISSN:2151-1535