On the perturbation analysis of the maximal solution for the matrix equation X−∑i=1mAi∗X−1Ai+∑j=1nBj∗X−1Bj=I $$ X-\overset{m}{\sum \limits_{i=1}}{A}_i^{\ast}\kern0.1em {X}^{-1}\kern0.1em {A}_i+\sum \limits_{j=1}^n{B}_j^{\ast}\kern0.1em {X}^{-1}\kern0.1em {B}_j=I $$

Abstract In this paper, we study the perturbation estimate of the maximal solution for the matrix equation X−∑i=1mAi∗X−1Ai+∑j=1nBj∗X−1Bj=I $$ X-\overset{m}{\sum \limits_{i=1}}{A}_i^{\ast}\kern0.1em {X}^{-1}\kern0.1em {A}_i+\sum \limits_{j=1}^n{B}_j^{\ast}\kern0.1em {X}^{-1}\kern0.1em {B}_j=I $$ usin...

Full description

Bibliographic Details
Main Authors: Mohamed A. Ramadan, Naglaa M. El–Shazly
Format: Article
Language:English
Published: SpringerOpen 2020-01-01
Series:Journal of the Egyptian Mathematical Society
Subjects:
Online Access:https://doi.org/10.1186/s42787-019-0052-7
_version_ 1819056203096915968
author Mohamed A. Ramadan
Naglaa M. El–Shazly
author_facet Mohamed A. Ramadan
Naglaa M. El–Shazly
author_sort Mohamed A. Ramadan
collection DOAJ
description Abstract In this paper, we study the perturbation estimate of the maximal solution for the matrix equation X−∑i=1mAi∗X−1Ai+∑j=1nBj∗X−1Bj=I $$ X-\overset{m}{\sum \limits_{i=1}}{A}_i^{\ast}\kern0.1em {X}^{-1}\kern0.1em {A}_i+\sum \limits_{j=1}^n{B}_j^{\ast}\kern0.1em {X}^{-1}\kern0.1em {B}_j=I $$ using the differentiation of matrices. We derive the differential bound for this maximal solution. Moreover, we present a perturbation estimate and an error bound for this maximal solution. Finally, a numerical example is given to clarify the reliability of our obtained results.
first_indexed 2024-12-21T13:19:40Z
format Article
id doaj.art-c57675eacbdd4c32b6d1821eb4d1a9ed
institution Directory Open Access Journal
issn 2090-9128
language English
last_indexed 2024-12-21T13:19:40Z
publishDate 2020-01-01
publisher SpringerOpen
record_format Article
series Journal of the Egyptian Mathematical Society
spelling doaj.art-c57675eacbdd4c32b6d1821eb4d1a9ed2022-12-21T19:02:37ZengSpringerOpenJournal of the Egyptian Mathematical Society2090-91282020-01-0128111310.1186/s42787-019-0052-7On the perturbation analysis of the maximal solution for the matrix equation X−∑i=1mAi∗X−1Ai+∑j=1nBj∗X−1Bj=I $$ X-\overset{m}{\sum \limits_{i=1}}{A}_i^{\ast}\kern0.1em {X}^{-1}\kern0.1em {A}_i+\sum \limits_{j=1}^n{B}_j^{\ast}\kern0.1em {X}^{-1}\kern0.1em {B}_j=I $$Mohamed A. Ramadan0Naglaa M. El–Shazly1Department of Mathematics and Computer Science, Faculty of Science, Menoufia UniversityDepartment of Mathematics and Computer Science, Faculty of Science, Menoufia UniversityAbstract In this paper, we study the perturbation estimate of the maximal solution for the matrix equation X−∑i=1mAi∗X−1Ai+∑j=1nBj∗X−1Bj=I $$ X-\overset{m}{\sum \limits_{i=1}}{A}_i^{\ast}\kern0.1em {X}^{-1}\kern0.1em {A}_i+\sum \limits_{j=1}^n{B}_j^{\ast}\kern0.1em {X}^{-1}\kern0.1em {B}_j=I $$ using the differentiation of matrices. We derive the differential bound for this maximal solution. Moreover, we present a perturbation estimate and an error bound for this maximal solution. Finally, a numerical example is given to clarify the reliability of our obtained results.https://doi.org/10.1186/s42787-019-0052-7Nonlinear matrix equationMaximal positive solutionIterationMatrix differentiationPerturbation bound
spellingShingle Mohamed A. Ramadan
Naglaa M. El–Shazly
On the perturbation analysis of the maximal solution for the matrix equation X−∑i=1mAi∗X−1Ai+∑j=1nBj∗X−1Bj=I $$ X-\overset{m}{\sum \limits_{i=1}}{A}_i^{\ast}\kern0.1em {X}^{-1}\kern0.1em {A}_i+\sum \limits_{j=1}^n{B}_j^{\ast}\kern0.1em {X}^{-1}\kern0.1em {B}_j=I $$
Journal of the Egyptian Mathematical Society
Nonlinear matrix equation
Maximal positive solution
Iteration
Matrix differentiation
Perturbation bound
title On the perturbation analysis of the maximal solution for the matrix equation X−∑i=1mAi∗X−1Ai+∑j=1nBj∗X−1Bj=I $$ X-\overset{m}{\sum \limits_{i=1}}{A}_i^{\ast}\kern0.1em {X}^{-1}\kern0.1em {A}_i+\sum \limits_{j=1}^n{B}_j^{\ast}\kern0.1em {X}^{-1}\kern0.1em {B}_j=I $$
title_full On the perturbation analysis of the maximal solution for the matrix equation X−∑i=1mAi∗X−1Ai+∑j=1nBj∗X−1Bj=I $$ X-\overset{m}{\sum \limits_{i=1}}{A}_i^{\ast}\kern0.1em {X}^{-1}\kern0.1em {A}_i+\sum \limits_{j=1}^n{B}_j^{\ast}\kern0.1em {X}^{-1}\kern0.1em {B}_j=I $$
title_fullStr On the perturbation analysis of the maximal solution for the matrix equation X−∑i=1mAi∗X−1Ai+∑j=1nBj∗X−1Bj=I $$ X-\overset{m}{\sum \limits_{i=1}}{A}_i^{\ast}\kern0.1em {X}^{-1}\kern0.1em {A}_i+\sum \limits_{j=1}^n{B}_j^{\ast}\kern0.1em {X}^{-1}\kern0.1em {B}_j=I $$
title_full_unstemmed On the perturbation analysis of the maximal solution for the matrix equation X−∑i=1mAi∗X−1Ai+∑j=1nBj∗X−1Bj=I $$ X-\overset{m}{\sum \limits_{i=1}}{A}_i^{\ast}\kern0.1em {X}^{-1}\kern0.1em {A}_i+\sum \limits_{j=1}^n{B}_j^{\ast}\kern0.1em {X}^{-1}\kern0.1em {B}_j=I $$
title_short On the perturbation analysis of the maximal solution for the matrix equation X−∑i=1mAi∗X−1Ai+∑j=1nBj∗X−1Bj=I $$ X-\overset{m}{\sum \limits_{i=1}}{A}_i^{\ast}\kern0.1em {X}^{-1}\kern0.1em {A}_i+\sum \limits_{j=1}^n{B}_j^{\ast}\kern0.1em {X}^{-1}\kern0.1em {B}_j=I $$
title_sort on the perturbation analysis of the maximal solution for the matrix equation x ∑i 1mai∗x 1ai ∑j 1nbj∗x 1bj i x overset m sum limits i 1 a i ast kern0 1em x 1 kern0 1em a i sum limits j 1 n b j ast kern0 1em x 1 kern0 1em b j i
topic Nonlinear matrix equation
Maximal positive solution
Iteration
Matrix differentiation
Perturbation bound
url https://doi.org/10.1186/s42787-019-0052-7
work_keys_str_mv AT mohamedaramadan ontheperturbationanalysisofthemaximalsolutionforthematrixequationxi1maix1aij1nbjx1bjixoversetmsumlimitsi1aiastkern01emx1kern01emaisumlimitsj1nbjastkern01emx1kern01embji
AT naglaamelshazly ontheperturbationanalysisofthemaximalsolutionforthematrixequationxi1maix1aij1nbjx1bjixoversetmsumlimitsi1aiastkern01emx1kern01emaisumlimitsj1nbjastkern01emx1kern01embji