Dependency-based Siamese long short-term memory network for learning sentence representations.
Textual representations play an important role in the field of natural language processing (NLP). The efficiency of NLP tasks, such as text comprehension and information extraction, can be significantly improved with proper textual representations. As neural networks are gradually applied to learn t...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2018-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC5841810?pdf=render |
_version_ | 1818138532238065664 |
---|---|
author | Wenhao Zhu Tengjun Yao Jianyue Ni Baogang Wei Zhiguo Lu |
author_facet | Wenhao Zhu Tengjun Yao Jianyue Ni Baogang Wei Zhiguo Lu |
author_sort | Wenhao Zhu |
collection | DOAJ |
description | Textual representations play an important role in the field of natural language processing (NLP). The efficiency of NLP tasks, such as text comprehension and information extraction, can be significantly improved with proper textual representations. As neural networks are gradually applied to learn the representation of words and phrases, fairly efficient models of learning short text representations have been developed, such as the continuous bag of words (CBOW) and skip-gram models, and they have been extensively employed in a variety of NLP tasks. Because of the complex structure generated by the longer text lengths, such as sentences, algorithms appropriate for learning short textual representations are not applicable for learning long textual representations. One method of learning long textual representations is the Long Short-Term Memory (LSTM) network, which is suitable for processing sequences. However, the standard LSTM does not adequately address the primary sentence structure (subject, predicate and object), which is an important factor for producing appropriate sentence representations. To resolve this issue, this paper proposes the dependency-based LSTM model (D-LSTM). The D-LSTM divides a sentence representation into two parts: a basic component and a supporting component. The D-LSTM uses a pre-trained dependency parser to obtain the primary sentence information and generate supporting components, and it also uses a standard LSTM model to generate the basic sentence components. A weight factor that can adjust the ratio of the basic and supporting components in a sentence is introduced to generate the sentence representation. Compared with the representation learned by the standard LSTM, the sentence representation learned by the D-LSTM contains a greater amount of useful information. The experimental results show that the D-LSTM is superior to the standard LSTM for sentences involving compositional knowledge (SICK) data. |
first_indexed | 2024-12-11T10:13:41Z |
format | Article |
id | doaj.art-c5851f4743c749758842fbc79416afce |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-12-11T10:13:41Z |
publishDate | 2018-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-c5851f4743c749758842fbc79416afce2022-12-22T01:11:41ZengPublic Library of Science (PLoS)PLoS ONE1932-62032018-01-01133e019391910.1371/journal.pone.0193919Dependency-based Siamese long short-term memory network for learning sentence representations.Wenhao ZhuTengjun YaoJianyue NiBaogang WeiZhiguo LuTextual representations play an important role in the field of natural language processing (NLP). The efficiency of NLP tasks, such as text comprehension and information extraction, can be significantly improved with proper textual representations. As neural networks are gradually applied to learn the representation of words and phrases, fairly efficient models of learning short text representations have been developed, such as the continuous bag of words (CBOW) and skip-gram models, and they have been extensively employed in a variety of NLP tasks. Because of the complex structure generated by the longer text lengths, such as sentences, algorithms appropriate for learning short textual representations are not applicable for learning long textual representations. One method of learning long textual representations is the Long Short-Term Memory (LSTM) network, which is suitable for processing sequences. However, the standard LSTM does not adequately address the primary sentence structure (subject, predicate and object), which is an important factor for producing appropriate sentence representations. To resolve this issue, this paper proposes the dependency-based LSTM model (D-LSTM). The D-LSTM divides a sentence representation into two parts: a basic component and a supporting component. The D-LSTM uses a pre-trained dependency parser to obtain the primary sentence information and generate supporting components, and it also uses a standard LSTM model to generate the basic sentence components. A weight factor that can adjust the ratio of the basic and supporting components in a sentence is introduced to generate the sentence representation. Compared with the representation learned by the standard LSTM, the sentence representation learned by the D-LSTM contains a greater amount of useful information. The experimental results show that the D-LSTM is superior to the standard LSTM for sentences involving compositional knowledge (SICK) data.http://europepmc.org/articles/PMC5841810?pdf=render |
spellingShingle | Wenhao Zhu Tengjun Yao Jianyue Ni Baogang Wei Zhiguo Lu Dependency-based Siamese long short-term memory network for learning sentence representations. PLoS ONE |
title | Dependency-based Siamese long short-term memory network for learning sentence representations. |
title_full | Dependency-based Siamese long short-term memory network for learning sentence representations. |
title_fullStr | Dependency-based Siamese long short-term memory network for learning sentence representations. |
title_full_unstemmed | Dependency-based Siamese long short-term memory network for learning sentence representations. |
title_short | Dependency-based Siamese long short-term memory network for learning sentence representations. |
title_sort | dependency based siamese long short term memory network for learning sentence representations |
url | http://europepmc.org/articles/PMC5841810?pdf=render |
work_keys_str_mv | AT wenhaozhu dependencybasedsiameselongshorttermmemorynetworkforlearningsentencerepresentations AT tengjunyao dependencybasedsiameselongshorttermmemorynetworkforlearningsentencerepresentations AT jianyueni dependencybasedsiameselongshorttermmemorynetworkforlearningsentencerepresentations AT baogangwei dependencybasedsiameselongshorttermmemorynetworkforlearningsentencerepresentations AT zhiguolu dependencybasedsiameselongshorttermmemorynetworkforlearningsentencerepresentations |