Summary: | Photovoltaic technology and unmanned aerial vehicles are both alluring areas with a lot of potential to explore. Consequently, they have an ability to adapt and progress when faced with new challenges, hence their wide range of applications. An auspicious combination between the two is born from the Unmanned Aerial Vehicles’ (UAVs) inability to to overcome some of its problems, namely the autonomy one. This article springs from the need to vanquish the problem, finding a more permanent solution. Its aim consists in the installation of solar photovoltaic panels in the structure of a UAV, with the objective of studying being its influence on the vehicle’s time of flight. To accomplish this, a theoretical study will be made, encompassing all the potential variables together with its influence. In order to verify the credibility of these claims, a prototype, based on the original aerial vehicle structure form and material, is constructed, using a finite element tool. Later, the prototype is used to evaluate possible harsh circumambient air to structure interactions, modeled by the fluid motion describer Navier–Stokes equations. For a smooth approach involving lighter computational power, a RANS model is used to asses the equations. Based on its results the chosen solar technology credibility is evaluated. A simulation of solar cells will also be carried out, accepting as input previously studied parameters which will modify its performance. Bearing in mind the produced results, it is concluded that the solar panels can only significantly augment the time of flight in very specific conditions.
|